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Preface

With the remarkable advancement in various branches of science, engineering and technology,
today more than ever before, the study of differential equations has become essential. For,
to have an exhaustive understanding of subjects like physics, mathematical biology, chemical
science, mechanics, fluid dynamics, heat transfer, aerodynamics, electricity, waves and electro-
magnetic, the knowledge of finding solution to differential equations is absolutely necessary.
These differential equations may be ordinary or partial. Finding and interpreting their solutions
are at the heart of applied mathematics. A thorough introduction to differential equations is
therefore a necessary part of the education of any applied mathematician, and this book is
aimed at building up skills in this area.

This book on ordinary / partial differential equations is the outcome of a series of lectures deliv-
ered by me, over several years, to the undergraduate or postgraduate students of Mathematics
at various institution. My principal objective of the book is to present the material in such a
way that would immediately make sense to a beginning student. In this respect, the book is
written to acquaint the reader in a logical order with various well-known mathematical tech-
niques in differential equations. Besides, interesting examples solving JAM / GATE / NET / IAS
/ NBHM/TIFR/SSC questions are provided in almost every chapter which strongly stimulate
and help the students for their preparation of those examinations from graduate level.

Organization of the book
The book has been organized in a logical order and the topics are discussed in a systematic
manner. It has comprising 21 chapters altogether. In the chapter 1, the fundamental con-
cept of differential equations including autonomous/ non-autonomous and linear / non-linear
differential equations has been explained. The order and degree of the ordinary differential
equations (ODEs) and partial differential equations(PDEs) are also mentioned. The chapter ??
are concerned the first order and first degree ODEs. It is also written in a progressive manner,
with the aim of developing a deeper understanding of ordinary differential equations, includ-
ing conditions for the existence and uniqueness of solutions. In chapter ?? the first order and
higher degree ODEs are illustrated with sufficient examples. The chapter ?? is concerned with
the higher order and first degree ODEs. Several methods, like method of undetermined coeffi-
cients, variation of parameters and Cauchy-Euler equations are also introduced in this chapter.
In chapter ??, second order initial value problems, boundary value problems and Eigenvalue
problems with Sturm-Liouville problems are expressed with proper examples. Simultaneous
linear differential equations are studied in chapter ??. It is also written in a progressive manner
with the aim of developing some alternative methods. In chapter 2, the equilibria, stability
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and phase plots of linear / nonlinear differential equations are also illustrated by including nu-
merical solutions and graphs produced using Mathematica version 9 in a progressive manner.
The geometric and physical application of ODEs are illustrated in chapter ??. The chapter 3
is presented the Total (Pfaffian) Differential Equations. In chapter ??, numerical solutions of
differential equations are added with proper examples. Further, I discuss Fourier transform in
chapter ??, Laplace transformation in chapter ??, Inverse Laplace transformation in chapter ??.
Moreover, series solution techniques of ODEs are presented with Frobenius method in chapter
??, Legendre function and Rodrigue formula in Chapter ??, Chebyshev functions in chapter
??, Bessel functions in chapter ?? and more special functions for Hypergeometric, Hermite and
Laguerre in chapter ?? in detail.

Besides, the partial differential equations are presented in chapter ??. In the said chapter,
the classification of linear, second order partial differential equations emphasizing the reasons
why the canonical examples of elliptic, parabolic and hyperbolic equations, namely Laplace’s
equation, the diffusion equation and the wave equation have the properties that they do has
been discussed. Chapter ?? is concerned with Green’s function. In chapter ??, the application of
differential equations are developed in a progressive manner. Also all chapters are concerned
with sufficient examples. In addition, there is also a set of exercises at the end of each chapter
to reinforce the skills of the students.

Moreover it gives the author great pleasure to inform the reader that the second edition of the
book has been improved, well -organized, enlarged and made up-to-date as per latest UGC -
CBSC syllabus. The following significant changes have been made in the second edition:

• Almost all the chapters have been rewritten in such a way that the reader will not find
any difficulty in understanding the subject matter.

• Errors , omissions and logical mistakes of the previous edition have been corrected.

• The exercises of all chapters of the previous edition have been improved, enlarged and
well-organized.

• Two new chapters like Green’s Functions and Application of Differential Equations have
been added in the present edition.

• More solved examples have been added so that the reader may gain confidence in the
techniques of solving problems.

• References to the latest papers of various university, IIT-JAM, GATE, and CSIR-UGC(NET)
have been provided in almost every chapters which strongly help the students for their
preparation of those examinations from graduate label.

In view of the above mentioned features it is expected that this new edition will appreciate and
be well prepared to use the wonderful subject of differential equations.

Aim and Scope
When mathematical modelling is used to describe physical, biological or chemical phenomena,
one of the most common results of the modelling process is a system of ordinary or partial
differential equations. Finding and interpreting the solutions of these differential equations
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is therefore a central part of applied mathematics, Physics and a thorough understanding of
differential equations is essential for any applied mathematician and physicist. The aim of this
book is to develop the required skills on the part of the reader. The book will thus appeal
to undergraduates/postgraduates in Mathematics, but would also be of use to physicists and
engineers. There are many worked examples based on interesting real-world problems. A large
selection of examples / exercises including JAM/NET/GATE questions is provided to strongly
stimulate and help the students for their preparation of those examinations from graduate level.
The coverage is broad, ranging from basic ODE , PDE to second order ODE’s including Bifurca-
tion theory, Sturm-Liouville theory, Fourier Transformation, Laplace Transformation, Green’s
function and existence and uniqueness theory, through to techniques for nonlinear differential
equations including stability methods. Therefore, it may be used in research organization or
scientific lab.

Significant features of the book

• A complete course of differential Equations

• Perfect for self-study and class room

• Useful for beginners as well as experts

• More than 650 worked out examples

• Large number of exercises

• More than 700 multiple choice questions with answers

• Suitable for New UGC-CBSC syllabus of ODE & PDE

• Suitable for GATE, NET, NBHM, TIFR, JAM, JEST, IAS, SSC examinations.
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Chapter 1

Fundamental Concept of
Differential Equations
1.1 Introduction
Differential equations have wide applications in various science and engineering disciplines.
In general, modelling variations of a physical quantity, such as displacement, velocity, pres-
sure,temperature, stress, strain, or concentration of a pollutant with the change of time t or
location, such as the coordinates (x, y, z) or both would require differential equations. Similarly,
studying the variation of a physical quantity on other physical quantities would lead to dif-
ferential equations. For example, the change of strain on stress for some viscoelastic materials
follows a differential equation. These differential equations may be ordinary or partial. In this
chapter, the most basic concepts of differential equations, formation of differential equations,
also the order and degree of differential equations are given in details.

1.2 Historical Note
Differential equations first came into existence with the invention of calculus by Isaac New-
ton(16 42-1727) and Gottfried Wilhelm Leibniz(1646-1716). Newton grew up in the English
countryside, was educated at Trinity College, Cambridge, and became Lucasian Professor of
Mathematics there in 1669. His epochal discoveries of calculus and of the fundamental laws
of mechanics date from 1665. They were circulated privately among his friends, but Newton
was extremely sensitive to criticism, and did not begin to publish his results until 1687 with
the appearance of his most famous book, Philosophiae Naturalis Principia Mathematica. In the
eighteenth century, Newton did relatively little work in differential equations as such, his de-
velopment of the calculus and elucidation of the basic principles of mechanics provided a basis
for their applications, while most notably by Euler. In fact, Newton classified first order differ-
ential equations according to the forms dy

dx = f (x), dy
dx = f (y) and dy

dx = f (x, y) and for the latter
equation he developed a method of solution using infinite series when f (x, y) is a polynomial
in x and y. Leibniz arrived at the fundamental results of calculus independently, although a
little later than Newton, but was the first to publish them, in 1684. Leibniz was fully conscious
of the power of good mathematical notation and he developed the natation , derivative dy

dx , the
integral sign, introduced the methods of separation of variables in 1691, the reduction of ho-
mogeneous equations to separable ones in 1691 and the procedure for solving first order linear
equations in 1694. The Jacob Bernoulli(1654- 1705) solved the Bernoulli differential equation
in 1695. This is an ordinary differential equation of the form y′ + P(x)y = Q(x)yn for which he
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obtained exact solutions. In particular, Jacob solve the differential equation dy
dx =

[
a3

(b2 y−a3)

] 1
2

and

in 1694 Johann Bernoulli was able to solve the differential equation dy
dx =

y
ax though it was not yet

known that d(log x) = dx
x . A problem of importance popularly known as the brachistochrone

problem regarding the curve of fastest descent drew the attention of both the brothers. Daniel
Bernoulli (1700-1782), son of Johann was a professor of botany and later physics but because
of his keep interests in mathematics made substantial contribution in partial differential equa-
tions and their applications. The famous Bernoulli equation in fluid dynamics is due to Daniel
Bernoulli. He was also the first to encounter the functions that a century later became known as
Bessel functions. Leonard Euler(1707-1783), the greatest and the most prolific mathematician of
the eighteenth century, was a student of Johann Bernoulli and a friend of Daniel Bernoulli in St.
Petersburg Academy. Among others, Euler identified the condition for exactness of first order
differential equations, developed the theory of integrating factors and the general solution of
homogeneous linear equations with constant coefficients in 1743. He extended these results to
non-homogenous equations in 1751. Euler is the first to use power series frequently in solving
differential equations and discovered numerical procedure for solving differential equations.
The greatest mathematician of the eighteenth century, Leonhard Euler (1707 − 1783), grew up
near Basel and was a student of Johann Bernoulli. He followed his friend Daniel Bernoulli to St.
Petersburg in 1727. Euler was the most prolific mathematician of all time, his collected works
fill more than 70 large volumes. His interests ranged over all areas of mathematics and many
fields of application. Of particular interest here is his formulation of problems in mechanics in
mathematical language and his development of methods of solving these mathematical prob-
lems. Lagrange said of Eulers work in mechanics, ”The first great work in which analysis is
applied to the science of movement”. Among other things, Euler identified the condition for
exactness of first order differential equations in 1734 − 35, developed the theory of integrating
factors in the same paper and gave the general solution of homogeneous linear equations with
constant coefficients in 1743. He extended the latter results to nonhomogeneous equations in
1750−51. Beginning about 1750, Euler made frequent use of power series in solving differential
equations. He also proposed a numerical procedure in 1768 − 69, made important contribu-
tions in partial differential equations and gave the first systematic treatment of the calculus of
variations. Joseph Lagrange (1736 − 1813) who succeeded Euler in the chair of Mathematics
showed that the general solution of an nth order linear homogenous differential equation is a
linear combination of n independent solutions. He solved this problem in 1755 and sent the so-
lution to Euler. Both further developed Lagrange’s method and applied it to mechanics, which
led to the formulation of Lagrangian mechanics. In 1774 he gave a complete development of
the method of variation of parameters. Pierre Simon de Laplace (1749 − 1827) famous for his
monumental work on celestial mechanics studied extensively the equation ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 = 0,
also known as Laplace’s equation, in connection with gravitational attraction. Adrien-Marie
Legendre (1752 − 1833) held various positions in the French Academie des Sciences from 1783
onward. His primary work was in the fields of elliptic functions and number theory. The
Legendre functions, solutions of Legendres equation, first appeared in 1784 in his study of the
attraction of spheroids. Indeed, by the nineteenth century almost all of the standard methods
of solving ordinary and partial differential equations were known. The twentieth century dis-
coveries were more towards a systematic and rigorous general theory and numerical solution.
Many made significant contributions in this direction and among them Picard, Runge, Kutta,
Hilbert and Frobenious special mention.
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1.3 Differential Equations
Definition 1.1 An equation involving derivatives or differentials of one or more dependent
variables w.r.t. one or more independent variables is called a differential Equation.

Some examples of differential equations are
dy
dx

=
a3

(b2y − a3)
(1.1)

dy
dx

+ 6y = 0 (1.2)

dy = (x2 + sin x)dx (1.3)
dy
dx

+ x2y = 6x3 (1.4)

(x + y)3 dy
dx

= c (1.5)

d2y
dx2 + 5y = 0 (1.6)
(d2y

dx2

)2

+ y = 7x2 (1.7)

d2y
dx2 = 6

{
1 +

(dy
dx

)2} 3
2

(1.8)

x3 d2y
dx2 + 3 cos x

dy
dx

+ 5 sin xy = 0 (1.9)

4
d2y
dx2 − 5

dy
dx

+ x3 sin y = 0 (1.10)

∂2u
∂t2 = c2 ∂

2u
∂x2 (1.11)

∂2u
∂x2 +

∂2u
∂y2 = 0 (1.12)

∂2u
∂x2 = 4

∂u
∂t

(1.13)

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0 (1.14)

∂2u
∂t2 = k

(∂3u
∂x3

)2
(1.15)

Hypothesis : Let = ⊆ <n+1 be a domain and I ⊆ < be an interval. Let F : I × = → < be a
function defined by (x, y, dy

dx ,
d2 y
dx2 , · · · , dn y

dxn ) 7→ F(x, y, dy
dx ,

d2 y
dx2 , · · · , dn y

dxn ) such that F is not a constant

function in the variable dn y
dxn .

Definition 1.2 (Ordinary Differential Equations(ODE)) Let the above hypothesis on F be
satisfied. An differential equation involving derivatives with respect to a single independent
variable is called an ordinary differential equation. Let x be an independent variable and y be
a dependent variable then most general ordinary differential equation can be written as

F
(
x, y,

dy
dx
, · · · , dny

dxn

)
= 0 (1.16)
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Equations (1.1) to (1.10) all are examples of ordinary differential equations.
Definition 1.3 (Partial Differential Equations (PDE)) A partial differential equation (PDE) is
an equation involving derivatives of an unknown function u : Ω → <, where Ω is an open
subset of<d, d ≥ 2 (or, more generally, of a differentiable manifold of dimension d ≥ 2).
In case d = n, the dependent variable u is a function of more than one independent variable,
say x1, x2, · · · , xn, then the partial differential equation for the function u is an equation of the
form

F
(
x1, x2, . . . , xn,u,

∂u
∂x1

, . . . ,
∂u
∂xn

,
∂2u
∂x1∂x1

, · · · , ∂2u
∂x1∂xn

, · · ·
)

= 0.

Equations (1.11) to (1.15) are examples of partial differential equations.

1.4 Order and Degree

Definition 1.4 (Order:) The order of a differential equation is the same as the order of the
highest derivative used in that differential equation. Differential equations (1.1)-(1.5) are of
first order. Differential equations (1.6) to (1.14) are of second order. Differential equation
(1.15) is of third order.

Definition 1.5 (Degree:) The degree of a differential equation is the greatest exponent of
the highest ordered derivative involving in it, when the equation is freed from radicals
and fractional powers with respect to the derivatives. To study the degree of a differential
equation, the key point is that the differential equation must be a polynomial in derivatives
i.e., dy

dx ,
d2 y
dx2 ,

d3 y
dx3 , etc. Therefore when an equation is a polynomial in all the derivatives(or

differential coefficients) involved, the power to which the highest derivative( differential
coefficient) is raised as known as the degree of the equation. Also it may be mention here
that the order and degree (if defined) of a differential equation are always positive integers.
Differential equations (1.1) to (1.6) and (1.9) to (1.14) are of first degree. Differential equations
(1.7), (1.8) and (1.15) are of second degree.

Remark: It may be again mentioned here that the degree of most ordinary differential equation
may not be defined. Sometimes it is observed that when an ordinary differential equation
is reduced to expressed in integral powers of the derivatives, then the resulting equation is
changed and its solutions will also be changed. So, after this reduction, the degree of the
original differential equation can not be obtained.

For example the degree and order of the differential equation e
d2 y
dx2 = x + 3 are one and two

respectively, as it can be expressed as d2 y
dx2 = loge(x+3). But the degree of the differential equation

d2 y
dx2 + sin( d2 y

dx2 ) + y = 0 can not be defined as it is not a polynomial of derivatives, although it has

order 2. Similarly, the degree of d3 y
dx3 + y2 + e

dy
dx = 0 is not defined as the differential equation is

not a polynomial equation in its derivatives although it has order 3.
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Example 1.1 Determine the order and degree of the following ODEs.

(i)
{
1 +

(
dy
dx

)2} 3
2

= ρ
d2 y
dx2 N.B.U(Hons)-08 (ii)

(
d2 y
dx2

)2

+ y =
dy
dx N.B.U(Hons)-07

(iii)(x + y)2 dy
dx + 5y = 3x4 (iv) dy

dx + sin( dy
dx ) = 0 (v) d2 y

dx2 + cos x dy
dx + sin y = 0

(vi)
{ d3 y

dx3

} 3
2

+
{ d3 y

dx3

} 2
3

= 0 (vii)
( d2 y

dx2

)− 7
2 dy

dx + y
( d2 y

dx2

)− 5
2

= 0

Solution. (i) Here,
{
1 +

(
dy
dx

)2} 3
2

= ρ
d2 y
dx2 or

{
1 +

(
dy
dx

)2}3

= ρ2
(

d2 y
dx2

)2

.

So the order and degree of the equation are two, since the highest order derivative is two and
the exponent of the highest order derivative is also two.
(ii) The order and degree of ODE are two.
(iii) The order and degree of ODE are one.
(iv) The degree of dy

dx + sin( dy
dx ) = 0 is not defined as the differential equation is not a polynomial

equation in its derivatives although it has order 1.
(v) The order is 2 and the degree of d2 y

dx2 + cos x dy
dx + sin y = 0 is 1 as the differential equation is a

polynomial equation in its derivatives although not a polynomial in y.

(vi) The order of
{ d3 y

dx3

} 3
2

+
{ d3 y

dx3

} 2
3

= 0 is 3. The L.C.M of the denominators of 3
2 ,

2
3 is 6. To find the

degree, the said differential equation can be written as
{( d3 y

dx3

) 3
2
}6

=
{
−
( d3 y

dx3

) 2
3
}6

i.e.,
( d3 y

dx3

)9
=

( d3 y
dx3

)4
.

Hence the degree of the given differential equation is 9.

Remark: It may be mention here that the differential equation
( d2 y

dx2

)4
=

( d2 y
dx2

)9
can not be

consider as
( d2 y

dx2

)5
= 1.

(vii) The order of
( d2 y

dx2

)− 7
2 dy

dx + y
( d2 y

dx2

)− 5
2

= 0 is 2. The power of highest order derivative is
negative. But the degree of a differential equation is always positive. So to find the degree,

we are multiplying
( d2 y

dx2

) 7
2 in both side of the said differential equation and then we obtain

dy
dx + y d2 y

dx2 = 0. Hence the degree of the given differential equation is 1.

Hypothesis(H): Let = ⊆ <n be a domain and I ⊆ < be an interval. Let f : I × = → < be a
continuous function defined by (x, y, dy

dx ,
d2 y
dx2 , · · · , dn−1 y

dxn−1 ) 7→ f (x, y, dy
dx ,

d2 y
dx2 , · · · , dn−1 y

dxn−1 ).

Definition 1.6 (ODE in Normal form) Assume Hypothesis(H) on f . An ordinary differential
equation of order n is said to be normal form if

dny
dxn = f

(
x, y,

dy
dx
, · · · , dn−1y

dxn−1

)
. (1.17)

Hypothesis(Hs): Let = ⊆ <n be a domain and I ⊆ < be an interval. Let f : I × = → <n be a
continuous function defined by (x,y) 7→ f (x,y) where y = (y1, y2, · · · , yn).

Definition 1.7 (System of ODEs) Assume Hypothesis(Hs) on f. A first order system of n
ordinary differential equations is given by

dy
dx

= f (x,y). (1.18)
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1.5 Types of Differential Equations
Differential equations may be classified in several ways. In this section we note that the
independent variable may be implicit or explicit, and that higher order derivatives may appear.

1.5.1 An autonomous and non-autonomous differential equations

Definition 1.8 (An autonomous and non-autonomous differential equations )An au-
tonomous differential equation is given by

dy
dx

= f(y, λ), y ∈ <n, λ ∈ <k; (1.19)

that is, the function f does not depend explicitly on the independent variable. If the function
f does depend explicitly on x, then the corresponding differential equation is called non-
autonomous.

In physical applications, we often encounter equations containing second, third, or higher order
derivatives with respect to the independent variable. These are called second order differential
equations, third order differential equations, and so on, where the the order of the equation
refers to the order of the highest order derivative with respect to the independent variable that
appears explicitly. In this hierarchy, a differential equation is called a first order differential
equation.

Recall that Newtons second lawthe rate of change of the linear momentum acting on a
body is equal to the sum of the forces acting on the bodyinvolves the second derivative of the
position of the body with respect to time. Thus, in many physical applications the most common
differential equations used as mathematical models are second order differential equations.

d2y
dx2 = mf (1.20)

Put u =
dy
dx in (1.20) and then it becomes to a autonomous differential equation

du
dx

= mf (1.21)

1.5.2 Linear and Non-linear Differential Equations

Definition 1.9 (Linear Differential Equation ) A differential equation (an ordinary or par-
tially differential equation) which contains the dependent variable and its derivative as a first
degree terms and no such term which is the product of the dependent variable (or its function)
and its derivatives or not any transcendental function of the dependent variable will be called
a linear differential equation. The general form of a linear differential equation is

a0(x)
dny
dxn + a1(x)

dn−1y
dxn−1 + a2(x)

dn−2y
dxn−2 + · · · + an−1(x)

dy
dx

+ an(x)y = R(x)

where a0, a1, a2, · · · , an,R, y are functions of an independent variable x.

Definition 1.10 (Non-linear Differential Equation ) A differential equation (an ordinary and
partially differential equations) which is not linear is called a non-linear differential equation.

So, the coefficients of linear differential equation are therefore either constant or functions
of the independent variable or variables. As for examples, the differential equations (1.2),
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(1.3), (1.4), (1.6), (1.9), (1.11), (1.12), (1.13) and (1.14) are linear differential equations and the
differential equations (1.1)(because of the term y dy

dx ), (1.5)(because of the term (x + y)3 dy
dx ), (1.7)

and (1.8)(because of the term
( d2 y

dx2

)2
), (1.10)(because of the term x3 sin y), (1.15) (because of the

term k
(
∂3u
∂x3

)2
) are non-linear differential equations.

Example 1.2 Show that (x + y)2 dy
dx + 5y = 3x4 is a non-linear ODE.

Proof. Since the co-efficient of dy
dx is a function of x and y. So the differential equation is non-

linear ODE.
Example 1.3 Determine the linearity of the following ODEs.
(i) d2 y

dx2 + y dy
dx + y2 = 0 C.H-96

(ii)
(

d2 y
dx2

)2

− dy
dx + y = 0.

Solution. (i) Non-linear, since dy
dx is multiplied by y and the last term is y2 and not y.

(ii) Non-linear, since d2 y
dx2 is of power two.

1.5.3 Homogeneous and Non-homogeneous Differential equations

Definition 1.11 (Homogeneous Differential equation) An ordinary differential equation is
said to be homogeneous if there is no isolated constant term in the equation, i.e. if all the
terms are proportional to a derivative of dependent variable (or dependent variable itself)
and there is no term that contains a function of independent variable or constant alone.
A partial differential equation is said to be homogeneous if derivatives involved in it are of
the same order.

A n − th order linear differential equation of the form

P0
dny
dxn + P1xn−1 dn−1y

dxn−1 + · · · + Pny = R (1.22)

where y is the dependent variable, x is the independent variable and P0(, 0),P1,P2, · · · ,Pn and
R are either constants or functions of x. If R = 0, then (1.22) is called a homogeneous linear
differential equation.
In particular a second order homogeneous linear differential equation is given by

d2y
dx2 + P

dy
dx

+ Qy = 0, (1.23)

where P, Q are either constants or functions of x.
Remarks: A homogeneous differential equations has several distinct meanings:
(i) A first-order ordinary differential equation of the form dy

dx = f ( y
x ) is of the type of homoge-

neous equation.
(ii) A differential equation is said to be homogeneous if it has zero as a solution otherwise it
is nonhomogeneous.

Definition 1.12 (Non-Homogeneous Differential equation) A differential equation which is
not homogeneous is called non-homogeneous differential equation.

If R , 0, then (1.22) is called a non-homogeneous linear differential equation.
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1.6 Genesis
The differential equations originate from physical phenomena are well known. In what follows,
we a few problems and many more will be cited in course of the development of the subject.
We however begin with an algebraic problem.

1.6.1 Algebraic Origin
The differential equations are formed by eliminating all the arbitrary constants that are involved
in the relation between the dependent and independent variables in algebra. Depending on the
number of arbitrary constants involve in the given equation differentiate it as many number of
times successively. Then the elimination of the arbitrary constants from the resulting equations
gives the required differential equation whose order is equal to the number of constants as the
following problem illustrates.
Example 1.4 Find the differential equation from the relation y = ax2+a2 where a is an arbitrary
constant.

Solution: The relation is given by
y = ax2 + a2 (1.24)

The relation (1.24) contain only one arbitrary constant i.e. a, so order of the differential equation
is of first order.
Differentiating (1.24) with respect to x, we get

dy
dx

= 2xa ⇒ a =
1
2x

dy
dx

Substituting the value of a in (1.24), we get

y =
1

2x
dy
dx

x2 +
( 1

2x
dy
dx

)2

⇒
(dy

dx

)2

+ 2x3 dy
dx
− 4x2y = 0.

Which is the required differential equation.
Example 1.5 Find the differential equation from the relation

ax2 + by2 = 1, (1.25)

where a and b are arbitrary constants.
Solution: The relation (1.25) contain two arbitrary constants i.e. a and b, so order of the
differential equation is of second order. Differentiating (1.25) w.r.t. x, we get,

2ax + 2by
dy
dx

= 0 (1.26)

Differentiating again with respect to x, we get,

2a + 2b
(dy

dx

)2

+ 2by
d2y
dx2 = 0 (1.27)

From (1.26) we get, a
b

= − y
x

dy
dx

(1.28)

Now from (1.27) and (1.28), we get,
(dy

dx

)2

+ y
d2y
dx2 =

y
x

dy
dx
⇒ xy

d2y
dx2 + x

(dy
dx

)2

= y
dy
dx

which is the required ordinary differential equation.
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1.6.2 Geometric Origin
The following is a nice situation in geometry which gives birth to a differential equation.
Example 1.6 Find the differential equation of all family of curves for which the length of the
part of the tangent between the point of contact (x, y) and the y-axis is equal to the y-intercept
of the tangent.

Solution: The equation of the tangent to any point P(x, y) of the curve y = f (x) (cf. Figure-1.1)
is given by

Y − y =
dy
dx

(X − x)⇒ Y − X
dy
dx

= y − x
dy
dx
⇒ X

x − y dx
dy

+
Y

y − x dy
dx

= 1 (1.29)

Then the y intercept of the tangent is (y − x dy
dx ) and the length of the tangent between the

point (x, y) and y-axis is the length PQ =
√

PR2 + QR2 =
√

(x tan Ψ)2 + x2 =

√
x2( dy

dx )2 + x2 =

x
√

1 + ( dy
dx )2.

Then we have, x
√

1 + ( dy
dx )2 = y − x dy

dx ⇒ x2[1 + ( dy
dx )2] = (y − x dy

dx )2 ⇒ x2 = y2 − 2xy dy
dx .

Example 1.7 Find the differential of all curves in the plane the tangent at every point of which
is parallel to the line joining the origin to that point.

Solution: Let P(x, y) be a point on the curve. The slope of the line joining the origin O to P is
y
x . By the given condition, we then get dy

dx =
y
x .

1.6.3 Mechanical Origin
Often differential equation describes a motion in mechanics as will be clear from the following
equation.
Example 1.8 A particle moves in a straight line such that its acceleration at a point is propor-
tional to its displacement measured from a fixed point on the line. Describe the motion.

Solution: Let x denoted the displacement of the particle. Then by the given condition, we get
the equation of motion as d2 y

dx2 = kx. Clearly, the motion is simple harmonic if k < 0.

1.6.4 Physical Origin
The following is a nice situation in physics which gives birth to a differential equation.
Example 1.9 Newtons second law: the rate of change of the linear momentum acting on a
body is equal to the sum of the forces acting on the bodyinvolves the second derivative of
the position of the body with respect to time. Thus, in many physical applications the most
common differential equations used as mathematical models are second order differential
equations.

d2x
dt2 = m f (1.30)

1.6.5 Chemical Origin
The following is a situation in chemistry which is best described by a differential equation.
Example 1.10 If hydriodic acid HI decomposes at a rate proportional to (1 − x)2 where x
denoted the quantity of hydriodic acid at time t and if this decomposition is retarded by a
quantity proportional to x2, describe how the acid decomposes.

Solution: Let x denotes the quantity of hydriodic acid at time t. Then dx
dt = k1(1 − x)2 − k2x2

which describes the rate of decomposition.
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1.6.6 Population Origin

The following is a nice situation in biology which gives birth to a differential equation.

Example 1.11 Let us consider the following situation of fish: X(t) be the biomass of fish, Ẋ(t)
be the growth rate of X with respect to time t, Nx(t) be the amount of nutrients at time t, rx

be the natural growth rate which is independent of supplied nutrients Nx, θx be the constant
deterioration rate, Lx be the environmental carrying capacity and hx be the harvesting rates.
The find the differential equation the of the said fish.

Solution: The governing dynamical system of fish is as follows:

Ẋ(t) = rx

( Nx

kx + Nx

) (
1 − X

Lx

)
X − hx, , where kx is the positive constant.

1.6.7 Economical Origin

The following is a situation in Econometric which is best described by a differential equation.
Example 1.12 Let us consider the rate of instantaneous change of the price P(t) is directly
proportional to the difference in the demand D and the supply S of this product for each time
t. If the demand and supply depend on the price as well as the time t, set the problem in
precise model.

Solution: Here P(t) denotes the price at time t. Let D(t, p) and S(t, p) denote the demand and
the supply at time t when the price is P(t). Hence the instantaneous change of the price P(t) at
time t is given by

dP
dt

= k{D(t,P) − S(t,P)} where k is a positive constant.

1.6.8 Biological Origin

The following example is drawn from Biology to demonstrate the need of differential equation
in describing many phenomena.
Example 1.13 Bacteria are produced at a rate proportional to their available quantity but at
the same time they generate poison destroying them at a rate proportional to the amount of
the poison and the quantity of bacteria, the rate of generation of poison being proportional to
the available quantity of bacteria. Determine the number of bacteria produced in time t.

Solution: Let P(t) be the amount of poison in time t, N(t) the number of bacteria at time t.
Assuming P and N to be differentiable functions of t, we can describe the above phenomenon
as

dN(t)
dt

= aN(t) − bN(t)P(t),
dP
dt

= cN(t), where a, b, c are constants.
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1.7 Initial-value problems
Definition 1.13 (Initial Value Problem for an ODE) An initial-value problem(IVP) is a dif-
ferential equation together with subsidiary conditions to be satisfied by the solution function
and its derivatives, all given at the same value of the independent variable.
Let x0 ∈ I and (y1, y2, · · · , yn) ∈ = be given. An IVP for an ODE in normal form is a relation
satisfied by an unknown function y given by

dny
dxn = f

(
x, y,

dy
dx
, · · · , dn−1y

dxn−1

)
,

(dry
dxr

)
x=x0

= yr, r = 0, 1, 2, · · · ,n − 1. (1.31)

A second order IVP may in general be put in the standard form as.

d2y
dx2 + P

dy
dx

+ Qy = X, (1.32)

where P,Q and X are functions of x. Subject to the conditions

y(a) = c1 and
(dy

dx

)
x=a

= c2, (1.33)

where a is a specific value of the independent variable x and c1, c2 are two constants. Hence a
solution to an initial-value problems is to find a y(x) that satisfies the differential equation (1.32)
as well as the given initial condition (1.33). If particular, X = 0 and c1 = c2 = 0, the problem is
said to be a homogeneous initial-value problem.

Example 1.14 Consider the differential equation d2 y
dx2 + 4y = 0; y(0) = 0,

( dy
dx

)
x=0

= 2. This
problem consists in finding a solution of the differential equation which assumes the value 0
at x = 0 and whose first derivative assumes the value 2 at x = 0. Thus this is an initial-value
problem.

1.8 Boundary-value problems
Definition 1.14 (Boundary-value problems for an ODE) A boundary value problem(BVP)
is a differential equation together with subsidiary conditions to be satisfied by the solution
function and its derivations, where the conditions are given for more than one values of the
independent variable.

A n order boundary-value problem in linear homogeneous differential equation may in general
be put in the form:

ODE: p0(x)
dny
dxn + p1(x)

d(n−1)y
dxn−1 + · · · + pn−1(x)

dy
dx

+ pn(x)y = 0 (1.34)

BCS: αky(a) + α(1)
k

dy
dx

∣∣∣∣∣
x=a

+ · · · + α(n−1)
k

d(n−1)y
dxn−1

∣∣∣∣∣
x=a

+ βky(b) + β(1)
k

dy
dx

∣∣∣∣∣
x=b

+ · · ·

+ β(n−1)
k

d(n−1)y
dxn−1

∣∣∣∣∣
x=b

= 0, k = 1, 2, · · · ,n. (1.35)

where the functions p0(x), p1(x), · · · , pn(x) are continuous on [a, b], p0(x) , 0 on [a, b]. Also
assume that a , b, αk, α

(1)
k , · · · , α

(n−1)
k , βk, β

(1)
k , · · · , β

(n−1)
k are all real constants and at least one of

αk, α
(1)
k , · · · , α

(n−1)
k , βk, β

(1)
k , · · · , β

(n−1)
k is non zero for all k = 1, 2, · · · ,n.
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Also, a second order boundary-value problem in linear differential equation may be put in the
form:

d2y(x)
dx2 + P(x)

dy(x)
dx

+ Q(x)y(x) = R(x), (1.36)

with the boundary conditions

A1y(a) + B1

(dy
dx

)
x=a

= c1, A2y(b) + B2

(dy
dx

)
x=b

= c2, (1.37)

where the functions P,Q,R are continuous [a, b] and A1,B1, c1,A2,B2, c2 are all real constants.
Also assume that a , b, A1 and B1 are not zero at a time and similarly A2 and B2 are also not all
zero at a time.

If the differential equation as well as the boundary condition are all homogeneous, that is, if
R = 0, c1 = c2 = 0, then this problem is said to be a homogeneous boundary-value problems.
Hence, a solution to a boundary value problem is to find a y(x) that satisfies the differential
equation (1.36) as well as the given boundary condition (1.37).

Example 1.15 Consider the differential equation d2 y
dx2 +y = 5; y(0) = 7, y(π2 ) = 16. This problem

consists in finding a solution of the differential equation which assumes the values 7 at x = 0
and whose first derivative assumes the value 16 at x = π

2 . Both of these conditions related to
one value of x, namely x = 0. That is, the conditions related to the two different values of x, 0
and π

2 . Thus this is an boundary-value problem.

1.9 Solution of Differential Equations
A function is said to be a solution of a differential equation, over a particular domain of the
independent variable, if its substitution into the equation reduces that equation to an identity
everywhere within that domain.

For an n−th-order ordinary differential equation (1.16), a function y = φ(x), which is n times
differentiable and satisfies the differential equation in some interval Iwhen substituted into the
equation, is called a solution of the differential equation over the interval I.
Definition 1.15 (Solution of an ODE) A function φ is said to be a solution of ODE (1.16) if
φ ∈ Cn(I) and

F
(
x, φ(x), φ(1)(x), φ(2)(x), · · · , φ(n)(x)

)
= 0, ∀x ∈ I (1.38)

where φ(n) stands for nth derivative of the function x 7→ φ(x) with respect to the independent
variable x.
Definition 1.16 (Solution of an ODE in Normal form) A function φ ∈ Cn(I0))) where I0 ⊆ I
is a subinterval, is called a solution of ODEs (1.17) if for every x ∈ I0, the (n + 1)−tuple
(x, φ(x), φ(1)(x), φ(2)(x), · · · , φ(n−1)(x)) ∈ I × = and

φ(n)(x) = f
(
x, φ(x), φ(1)(x), φ(2)(x), · · · , φ(n−1)(x)

)
, ∀x ∈ I0. (1.39)

Definition 1.17 (Solution of an IVP for an ODE) A solution φ of ODE (1.17) is said to be a
solution of IVP if x0 ∈ I0 and

(drφ

dxr

)
x0

= yr, r = 0, 1, 2, · · · ,n − 1.

This solution is denoted by φ(·; x0, y0, y1, · · · , yn−1) to remember the IVP solved by φ.



FUNDAMENTAL CONCEPT OF DIFFERENTIAL EQUATIONS 13

Definition 1.18 (Local and Global solutions of an IVP) Let φ be a solution of an IVP for ODE
(1.17) according to Definition 1.13.

1 If I0 ⊆ I, then φ is called a local solution of IVP.
2 If I0 = I, then φ is called a global solution of IVP.

Remarks:
1 Note that in all our definitions of solutions, a solution always comes with its domain

of definition. Sometimes it may be possible to extend the given solution to a bigger
domain. We address this issue in the next chapters.

2 When n = 1, geometrically speaking, graph of solution of an IVP is a curve passing
through the point (x0, y0).

Definition 1.19 (General Solution) The solution of a differential equation is called its general
solution if its contains a number of arbitrary constants equal to the order of the differential
equation. This solution is also called a complete solution or a complete primitive or a
complete integral.

As for example y = A cos x + B sin x is the complete solution of a differential equation d2 y
dx2 + y = 0,

since it contains two arbitrary constants A and B as well as the order of the differential is also
two.
Definition 1.20 (Particular Solution) A solution of a differential equation by giving particular
values to the arbitrary constants in its general solution is called a particular solution of that
equation.

As for example, if we put A = 1 and B = 0 in the general solution y = A cos x + B sin x of the
differential equation d2 y

dx2 + y = 0, then y = cos x is the particular solution of this equation.
Definition 1.21 (Singular Solution) Sometime, the general solution of any differential equa-
tion does not include all possible solutions of the differential equation. In otherworld, there
may exist such a solution which can not be obtained by giving any particular values to those
arbitrary constants to the general solution. This is called a singular solution of that differential
equation.

As for example y = c x + a
c is the general solution of the differential equation y = p x + a

p where

p ≡ dy
dx . But it is seen that y2 = 4ax is also a solution of this differential equation, but it cannot

be obtained by giving any particular value of c to its general solution. So y2 = 4ax is a singular
solution of the differential equation y = p x + a

p .
In some differential equations, the general solution consists of terms involving the arbitrary

constants and terms giving a function of the independent variable. The first part is called the
complementary function and the remaining part, which can be obtained by giving the value
zero to each of the arbitrary constants, is called the particular integral. If the general solution
is given by

y = A cosx + B sinx + xex,

where A and B are arbitrary constants, then the complementary function is A cosx + B sinx and
particular integral is xex.
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1.10 Geometric interpretation of a first order ODE and its solu-
tion

We now define some terminology that we use while giving a geometric meaning of an ODE
given by

dy
dx

= f (x, y) (1.40)

We recall that f is defined on D in<2. In fact, D = I × J where I, J are sub-intervals of<.
Definition 1.22 (Line element) A line element associated to a point (x, y) ∈ D is a line passing
through the point (x, y) with slope p. We use the triple (x, y, p) to denote a line element.

Definition 1.23 (Direction field/ Vector field) A direction field (sometimes called vector field)
associated to the ODE (1.40) is collection of all line elements in the domain D where slope
of the line element associated to the point (x, y) has slope equal to f (x, y). In other words, a
direction field is the collection

{
(x, y, f (x, y)) : (x, y) ∈ D

}
.

Remark (Interpretations):
1 The ODE (1.40) can be thought of prescribing line elements in the domain D.
2 Solving an ODE can be geometrically interpreted as finding curves in D that fit the

direction field prescribed by the ODE. A solution (say φ) of the ODE passing through a
point (x0, y0) ∈ D (i.e., φ(x0) = y0) must satisfy φ′(x0) = f (x0, y0). In other words,

(x0, y0, φ
′(x0)) = (x0, y0, f (x0, y0))

3 That is, the ODE prescribes the slope of the tangent to the graph of any solution (which
is equal to φ′(x0)). This can be seen by looking at the graph of a solution.

4 Drawing direction field corresponding to a given ODE and fitting some curve to it will
end up in finding a solution, at least, graphically. However note that it may be possible
to fit more than one curve passing through some points in D, which is the case where
there are more than one solution to ODE around those points. Thus this activity (of
drawing and fitting curves) helps to get a rough idea of nature of solutions of ODE.

5 A big challenge is to draw direction field for a given ODE. One good starting point is
to identify all the points in domain D at which line element has the same slope and it is
easy to draw all these lines. These are called isoclines; the word means leaning equally.

1.11 Worked Out Examples

Example 1.16 Determine the order and degree of the following differential equation

(i)( dy
dx )2 + 3y2 = 0 (ii)

(
d2 y
dx2

)2

+ xy =
dy
dx (iii)

√
dy
dx = 2y.

(iv)
(

dy
dx

) 2
3

= 3 +
d2 y
dx2 (v)

(
d2 y
dx2 + 1

) 3
2

= 3x dy
dx (vi) y +

dy
dx = e

d2 y
dx2

Solution: (i) Order is 1 and degree is 2.
(ii) Order is 2 and degree is 2.

(iii)
√

dy
dx = 2y⇒ dy

dx = 4y2, order is 1 and degree is 1.
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(iv)
(

dy
dx

) 2
3

= 3 +
d2 y
dx2 ⇒

(
dy
dx

)2

=
(
3 +

d2 y
dx2

)3

.

Hence the order is 2 and degree is 3.

(v)
(

d2 y
dx2 + 1

) 3
2

= 3x dy
dx ⇒

(
d2 y
dx2 + 1

)3

= 9x2
(

dy
dx

)2

.

Hence the order is 2 and degree is 3.
(vi) The differential equation can be written as d2 y

dx2 = log(y +
dy
dx ), so the degree of the said

differential equation can not be defined as it is not a polynomial of derivatives although it has
order 2.
Example 1.17 Show that the differential equation of the family of circles

x2 + y2 + 2gx + 2 f y + c = 0, (1.41)

(where g, f , c are parameters) is
{
1 + ( dy

dx )2
}

d3 y
dx3 − 3 dy

dx

(
d2 y
dx2

)2

= 0.

Solution: Equation (1.41) contains three parameter g, f and c. Differentiating (1.41) with respect
to x , we get 2x + 2y dy

dx + 2g + 2 f dy
dx = 0. Again differentiating with respect to x, we get

2 + 2y
d2y
dx2 + 2(

dy
dx

)2 + 2 f
d2y
dx2 = 0 (1.42)

Differentiating again with respect to x, we get,

2y
d3y
dx3 + 6

dy
dx

d2y
dx2 + 2 f

d3y
dx3 = 0. (1.43)

Now from (1.43) we get,

f = − (y d3 y
dx3 + 3 dy

dx
d2 y
dx2 )

d3 y
dx3

(1.44)

From (1.42) & (1.44), the required result is
{
1 + ( dy

dx )2
}

d3 y
dx3 − 3 dy

dx

(
d2 y
dx2

)2

= 0.

Figure 1.1: Family of Curves

Figure 1.2: Circles

Example 1.18 Obtain the differential equation of all circles each of which touches the x axis
at the origin. C.U(Hons.)-85, 93; V.U.(Hons.)-88, 97; IAS(Prel.)-99
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Solution: The equation of the circles touching the x-axis at the origin (cf. Figure-1.2) is

(x − 0)2 + (y − a)2 = a2 ⇒ x2 + y2 − 2ay = 0, (1.45)

where a is an arbitrary constant. Differentiating both sides w.r.t. x, we get,

2x + 2y
dy
dx
− 2a

dy
dx

= 0, a =
x + y dy

dx
dy
dx

.

Putting the value of a in the equation (1.45), we get,

x2 + y2 − 2
x + y dy

dx
dy
dx

y = 0⇒ (x2 + y2)
dy
dx
− 2y2 dy

dx
= 2xy ⇒ (x2 − y2)

dy
dx

= 2xy.

Example 1.19 Find the differential equation of all family of circles having their centres on the
y− axis.

Solution: The equation of the family of circles having their centres on the y-axis to be

x2 + (y − a)2 = r2, (1.46)

where a, r are arbitrary constants. This is a two parameters family of curves. To find the differ-
ential equation of the family of curves (1.46), we have to eliminate both a and r. Differentiating
(1.46)with respect to x, we get

2x + 2(y − a)
dy
dx

= 0 ⇒ x + (y − a)
dy
dx

= 0. (1.47)

Expressing (1.47) in the form, x+y dy
dx

dy
dx

= a and then differentiating the above relation w.r.t. x, we

find that

dy
dx

(
1 + y d2 y

dx2 +
( dy

dx

)2
)
− d2 y

dx2

(
x + y dy

dx

)

( dy
dx

)2 = 0

or, x
d2y
dx2 −

(dy
dx

)3 − dy
dx

= 0 is the differential equation of the family of circles.

Example 1.20 Obtain the differential equation corresponding to the primitive:

(x − α)2 + (y − β)2 = r2 (1.48)

where r is a fixed constant and α, β are arbitrary constants. Give a geometrical interpretation
of the result. B.U.(Hons.) 1982

Solution: Differentiating (1.48) w.r.t. x, we obtain

(x − α) + (y − β)
dy
dx

= 0 (1.49)

Differentiating (1.49) again w.r.t. x, we obtain

1 + (
dy
dx

)2 + (y − β)
d2y
dx2 = 0 (1.50)
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From (1.50) we get, y− β = − 1+( dy
dx )2

d2 y
dx2

and hence (1.49) gives x− α =
dy
dx (1+( dy

dx )2)
d2 y
dx2

. These values when

substituted in (1.48) leads to the required equation

r2(
d2y
dx2 )2 = (1 + (

dy
dx

)2)3 (1.51)

Geometrical interpretation. If we vary α and β in (1.48) we get a system of circles of given radius
r, having their centres anywhere in the xy− plane. The differential equation (1.51) expresses the
fact that for every member of the system the radius of curvature has everywhere the constant
value r.
Example 1.21 The equation

x2

a2 + λ
+

y2

b2 + λ
= 1, WBSSC 2001 (1.52)

(where a and b are fixed constants and λ is an arbitrary parameter which can assume all
real values) represents a family of confocal conics. To obtain the differential equation of this
family.

Solution: The required differential equation is obtained by eliminating λ from (1.52) and the
derived equation

2x
a2 + λ

+
2yy′

b2 + λ
= 0, (y

′
=

dy
dx

)

⇒ x
a2 + λ

= − yy′

b2 + λ
=

x + yy′

a2 − b2

⇒ x2

a2 + λ
=

x(x + yy′)
a2 − b2 and

y2

b2 + λ
= − y

y′
· x + yy′

a2 − b2 (1.53)

Then using (1.52) and (1.53), we have the required differential equation as

(a2 − b2)y
′
= (xy

′ − y)(x + yy
′
)

Example 1.22 State with reasons whether the following differential equations are linear:

(i)
d2y
dx2 + y

dy
dx

+ y2 = 0 (ii) x2 d2y
dx2 − x

dy
dx

+ y = 1 − log x, x > 0

(iii) x
d2y
dx2 + x2 dy

dx
− sin x

√
y = 0, y > 0 (iv)

d2y
dx2 + x2 dy

dx
+ x sin y = 0

Solution: (i) The non-linear terms of the differential equation are y dy
dx and y2. So the differential

equation is non-linear.
(ii) Each terms of the differential equation is in linear form. So the differential equation is linear.
(iii) The non-linear term of the differential equation is sin x

√
y. So the differential equation is

non-linear.
(iv) The non-linear term of the differential equation is x sin y. So the differential equation is
non-linear.
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1.12 Multiple Choice Questions(MCQ)

1. The type of the following differential equation y′′ + sin (x + y) = sin x is
(a) linear, homogeneous (b) nonlinear, homogeneous Gate(MA): 2001
(c) linear, nonhomogeneous (d) nonlinear, nonhomogeneous
Ans. (d) is correct.

2. If y = ln(sin(x+a))+b where a and b are constants, is the primitive, then the corresponding
lowest order differential equation is
(a) y′′ = −(1 + (y′)2) (b) y′′ = 1 + (y′)2

(c) y′′ = −(2 + (y′)2) (d) y′′ = −(3 + (y′)2) [JAM CA-2005]
Ans. (a)
Hint. y = ln(sin(x + a)) + b contains two arbitrary constants. Eliminating a and b, we get,
y′′ = −(1 + (y′)2).

3. The differential equation representing all circles centrad at (1, 0) is
(a) x + y dy

dx = 1 (b) x − y dy
dx = 1 (c) y − x dy

dx = 1 (d) y + x dy
dx = 1

Ans. (a) JAM CA-2010
4. The differential equation representing the family of circles touching y- axis at the origin is

(a) Non linear and of first order (b) linear and of second order JAM(MA):2006
(c) exact and linear but not homogeneous (d) exact, homogeneous and linear
Ans. (a)
Hint. Like the example 1.18.

5. The differential equation (3y − 2x) dy
dx = 2y JAM CA-2006

(a) homogeneous but not linear (b) linear and homogeneous
(c) linear but not homogeneous (d) homogeneous and linear
Ans. (a)

6. The degree of d2 y
dx2 = log(y +

dy
dx ) is

(a) 1 (b) 0 (c) Does not exist (d) 2
Ans. (c)
Hint. The R.H.S of the given differential equation can not be a polynomial of dy

dx .

7. The order and degree of
( d2 y

dx2

) 1
3

=
(
y +

dy
dx

) 1
2 are

(a) 1, 3 (b) 2, 1 (c) 2, Does not exist (d) 2, 2
Ans. (d)

8. The order and degree of d2

dx2

( d2 y
dx2

)− 3
2

= 0 are
(a) 1, 3 (b) 4, 1 (c) 2, Does not exist (d) 3, 2 [IAS(Prel.) -2006; ]
Ans. (b)
Hint. The problem is same with (vii) of Example 1.1.

1.13 Review Exercises

1 Define an ordinary differential equation. What do you mean by the degree and order of
a differential equation?

2 Explain the terms: general solution, a particular solution, a singular solution as applied
to an ordinary differential equation.
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3 Find the differential equation, eliminate the arbitrary constants a, b, c from the equation
y = a + b e5x + c e−7x. Ans. d3 y

dx3 + 2 d2 y
dx2 = 35 dy

dx ; C.U(Hons.) 1995
4 Find the differential equation, eliminate the arbitrary constants a, b from the equation

xy = aex + b e−x + x2. Ans. x d2 y
dx2 + 2 dy

dx − xy + x2 − 2 = 0. ; IAS-1992
5 Find the differential equation, eliminate the arbitrary constants c from the equation y =

c(x − c)2. Ans. (y′)3 = 4y(xy′ − 2y) IAS(Prel.)-2009
6 Find the differential equation, eliminate the arbitrary constants a, b, c, d from the equation

y = ax+b
cx+d . Ans. 3( d2 y

dx2 )2 = 2 dy
dx

d3 y
dx3 .

Hint. The given equation can be written as y = e x+ f
x+g where e = a

c , f = b
a and g = d

c .
So the independent arbitrary constants are e, f , g. Eliminating the independent arbitrary
constants e, f , g, we get the required differential equation 3( d2 y

dx2 )2 = 2 dy
dx

d3 y
dx3 .

7 Find the order of differential equation, eliminate the arbitrary constants a, b, c, d from the
equation y = ax+b

cx+d with c + d = 0. Ans. 2.
Hint. The given equation can be written as y = e x+ f

x−1 where e = a
c , f = b

a . So the indepen-
dent arbitrary constants are e, f . As the number of independent arbitrary constants is 2,
the the order of differential equation is 2.

8 Show that the substitution x = sinh z transforms the equation
(1 + x2) d2 y

dx2 + x dy
dx = 4y into d2 y

dz2 = 4y. C.U(Hons.) 1982
9 Show that the differential equation of all parabolas having their axes parallel to the y−

axis is d3 y
dx3 = 0. C.U(Hons.) 1994; N.B.U(Hons.) 2007

10 Show that the differential equation of all parabolas with foci at the origin and axes along
the x− axis is y( dy

dx )2 + 2x dy
dx − y = 0. V.U(Hons.) 2002

Hint. Here the parabola is (x + 2a)2 = x2 + y2, where a is the parameter.
11 Obtain the differential equation of all circles each of which touches the y axis at the origin.

Ans. x2 − y2 + 2xy dy
dx = 0; IAS(Prel.)-1997

Hint. Like the example 1.18.
12 Find the differential equation of all family of circles which pass through the origin and

whose centres on the x− axis. Ans. x2 − y2 + 2xy dy
dx = 0; B.U(Hons.)-1987,

IAS(Prel.)-2002.
13 Obtain the differential equation of all conics whose axes coincide with the axes of coordi-

nates.
Hint. General equation of the conic is ax2 + by2 = 1.
Ans. xy d2 y

dx2 + x( dy
dx )2 − y dy

dx = 0.
14 Prove that the differential equation of the circles through the intersection of the circle

x2 + y2 = 1 and the line x − y = 0 is
(x2 − 2xy − y2 + 1)dx + (x2 + 2xy − y2 − 1)dy = 0 V.U(Hons.)-2017
Hint. General equation of the circle is x2 + y2 − 1 + λ(x − y) = 0 where λ is a parameter.

15 The motion of a particle of mass m moving along a straight line is governed by the equation

mx′′ + rx′ + kx = 0, where r and k are constants. Verify that

x = Ae−( r
2m )t cos(

ω
2m

t + B), (ω2 = 4mk − r2)

satisfies the differential equation, A and B being arbitrary constraints.
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16 Find the differential equations of the family of parabolas y = cx2 when would the equation
be meaningful? Ans. xy′ = 2y. Everywhere except when c is indeterminate when
x = 0, y = 0.

17 Determine the order and degree of the following ODEs.
(i) d2 y

dx2 + sin( dy
dx ) = 0. Ans. Order is 2 and degree does not exist.

(ii)e
d3 y
dx3 + x +

dy
dx = 0. Ans. Order is 3 and degree does not exist.

(iii)
{ d2 y

dx2

} 1
2

+
{ d2 y

dx2

} 2
5

= 0. Ans. Order is 2 and degree is 5.

(iv)
( d2 y

dx2

)− 3
2 dy

dx + y
( d2 y

dx2

)− 7
2

= 0. Ans. Order is 2 and degree is 2.
18 Show that the substitution x = ez transforms the equation

x2 d2 y
dx2 + x dy

dx + 4y = 0 into d2 y
dz2 + 4y = 0.

19 Show that the substitution z = sin x transforms the equation
d2 y
dx2 +

dy
dx tan x + y cos2 x = 0 into d2 y

dz2 + y = 0. C.U(Hons.) 1983
20 Construct a differential equation by elimination of the arbitrary constants a and b from

each of the relations
(i) ax2 + by2 = 1 Ans. xyy′′ + x(y′)2 − yy′ = 0
(ii) (x − a)2 + (y − b)2 = r2 Ans. r2(y′′)2 = (1 + (y′)2)3

(iii) x = a cos nt + b sin nt. Ans. d2x
dt2 + n2x = 0

21 Eliminating α from the following equations. State the order and degree of the resulting
differential equations; say whether linear or not
(i) x2 + y2 − 2αy = α2

(ii) y = αx + α − α3

(iii) x cos α + y sin α = a.
Ans. (i) x2(y′)2 − 4xyy′ − x2 − 2y2(y′)2 = 0 (First order, second degree and non-linear)
(ii)y = xy′ + y′ − (y′)3 (First order, third degree and non-linear)
(iii) (y − xy′)2 = a2(1 + (y′)2) (First order, second degree and non-linear)

22 Show that (x + y) dy
dx + 5y2 = 3x4 is a non-linear ODE.

23 Determine the nature of the following ODEs.
(i) d2 y

dx2 +
dy
dx + y = 0 Ans. Linear and homogenous; C.H-96.

(ii) d2 y
dx2 − dy

dx + y = x2 Ans. Linear and non-homogenous.
24 Show that the differential equation representing the family of all straight lines which

have an intercept of constant length L between the coordinate axes is x dy
dx − y =

L dy
dx√

1+( dy
dx )2

JAM(MA)-2008
25 Show that the adiabatic law pνγ = c is a fixed and c is an arbitrary constant, lead to

ν
dp
dν + γp = 0.

26 Show that the substitution x = eu transforms the equation
x2 d2 y

dx2 + 4x dy
dx + 2y = cos x into d2 y

du2 + 3 dy
du + 2y = cos x. JAM(MA)–2010



Chapter 2

Stability Analysis of Differential
Equations
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2.1 Introduction
The main purpose of developing stability theory is to examine the dynamic responses of a
system to disturbances as time approaches infinity. It has been and still is the subject of intense
investigations due to its intrinsic interest and its relevance to all practical systems in engineer-
ing, natural science, social science and finance. Lyapunov stability theory is the foundation of
stability analysis for dynamic systems that are mathematically described by ordinary differen-
tial equations (ODE). Also, Linearization is the process of replacing the nonlinear system model
by its linear counterpart in a small region about its equilibrium point. We have well established
tools to analyze and stabilize linear systems.

The evolution of stability theory has been very rapid and extensive. The present chapter comes
mainly from my research results and teaching of graduate students in the stability of dynamical
systems. In this chapter, we define various stabilities mathematically, illustrate their relations
using examples and discuss the main mathematical tools for stability analysis. The stability
of linear systems with constant coefficients / variable coefficients and homogeneous / non-
homogeneous systems are also introduced in details. The necessary and sufficient conditions
are systematically developed for stability, uniform stability, uniformly asymptotic stability and
instability.

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any point is in a
small enough neighborhood or it stays in a small (but perhaps, larger) neighborhood. Various
criteria have been developed to prove stability or instability of an orbit. Under favorable
circumstances, the question may be reduced to a well-studied problem involving eigenvalues
of matrices. A more general method involves Lyapunov functions. In practice, any one of a
number of different stability criteria are applied.
In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter
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values (the bifurcation parameters) of a system causes a sudden qualitative or topological
change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria,
periodic orbits or other invariant sets changes.
In this chapter, we have discussed the overall concepts about the stability theory and bifurcation
theory.

2.2 Dynamical System

A dynamical system is a concept in mathematics where a fixed rule describes how a point in a
geometrical space depends on time. Examples include the mathematical models that describe
the swinging of a clock pendulum, the flow of water in a pipe, and the number of fish each
springtime in a lake, etc. Specially, the dynamical system has a mathematical form of system of
ODEs. So we have,

Hypothesis(Hs): Let = ⊆ <n be a domain and I ⊆ < be an interval. Let f : I × = → <n be a
continuous function defined by (t, x) 7→ f (t, x) where x = (x1, x2, · · · , xn).

Definition 2.1 (System of ODEs) Assume Hypothesis(Hs) on f. A first order system of n
ordinary differential equations is given by

dx
dt

= f(x, t). (2.1)

A dynamical system can be divided into autonomous system and non-autonomous system.

Definition 2.2 (Equilibrium Point) The point x̄ ∈ Rn is an equilibrium point for the differen-
tial equation dx

dt = f(x, t) if f(x̄, t) = 0 for all t.

2.3 Phase Plane

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is
a visual display of certain characteristics of certain kinds of differential equations, a coordinate
plane with axes being the values of the two state variables, say (x, y) or (p, q) etc.(any pair of
variables). It is a two-dimensional case of the general n− dimensional phase space.

The phase plane method refers to graphically determining the existence of limit cycles in the
solutions of the differential equation.

The solutions to the differential equation are a family of functions. Graphically, this can be
plotted in the phase plane a two dimensional vector field. Vectors representing the derivatives
of the points with respect to parameters(say time t), that is ( dx

dt ,
dy
dt ) at representative points are

drawn. With enough to these arrows in place the system behavior over the regions of plane
in analysis can be visualized and limit cycles can be easily identified. So the phase planes are
useful in visualizing the behavior of physical systems.
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2.4 Phase Portrait, Orbit and Attractor

Definition 2.3 (Phase Portrait:) A phase portrait is a geometric representation of the trajec-
tories of a dynamical system in the phase plane. Each set of initial conditions is represented
by a different curve, or point.

Phase portraits are an invaluable tool in studying the system of differential equations. They
consist of a plot of typical trajectories in the state space. This reveals information that the said
dynamical system is stable, uniformly stable, asymptotically stable or unstable.

Definition 2.4 (Orbit:) In mathematics, in the study of dynamical systems, an orbit is a
collection of points related by the evolution function of the dynamical system.

Definition 2.5 (Attractor:) In the mathematical field of dynamical systems, an attractor is a
set of numerical values toward which a system tends to evolve, for a wide variety of starting
conditions of the system. System values that get close enough to the attractor values remain
close even if slightly disturbed.

2.5 Steady States

A constant solution y(t) = c is called a steady state for a differential equation. It is a solution
where the value of y does not change over time. For example, consider the differential equation
ẏ = ay. In order for the level of y to be the same this year and last year, we must have that y
does not change, or ẏ = 0. Therefore, the only value of y for which this can happen (as long as
a , 0) is y = 0, and so y = 0 is a steady state to the equation.

For the system of differential equations

ẋ = f1(x, y), ẏ = f2(x, y) (2.2)

, we can find the steady state (equilibrium solution) of the system by setting both ẋ = 0 and ẏ = 0.
A critical point (x∗, y∗) of the dynamical system (2.2) is a point such that f1(x∗, y∗) = f2(x∗, y∗) = 0.
If (x∗, y∗) is a critical point of the system, then the constant-value functions x(t) = x∗, y(t) = y∗

satisfy the equations in (2.2). Such a constant-valued solution is called an equilibrium solution
of the dynamical system (2.2). The critical point also called equilibrium point of (2.2).
Example 2.1 Find the steady state point (Or Equilibrium Point) for the system of equations
ẋ = e(x−1) − 1 and ẏ = yex.

Solution: Setting both these equations equal to 0 yields

ẋ = 0⇒ e(x−1) = 1⇒ x = 1,

ẏ = 0⇒ yex = 0⇒ y = 0.

Therefore (1, 0) is the steady state point (Or Equilibrium Point) of the given system.
Example 2.2 Find the steady state point (Or Equilibrium Point) for the system of equations
ẋ = x + 2y and ẏ = x2 + y.
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Solution: Setting both these equations equal to 0 yields

ẋ = 0⇒ x = 2y,

ẏ = 0⇒ y = −x2.

So, x = −2(−x2)⇒ x(1 − 2x) = 0⇒ x = {0, 1
2
}

and y = {0,−1
4
}

Therefore (0, 0), ( 1
2 ,− 1

4 ) are steady state points (Or Equilibrium Point) of the given system.

2.6 Differential Dynamical Structure of multi variable form for
autonomous system

Consider the general system of differential equations

ẋ = f(x)

ẋi(t) = fi(x1, x2, · · · , xn), (i = 1, 2, · · · ,n) (2.3)

where x = (x1, x2, · · · , xn) depends on t and f = ( f1, f2, · · · , fn).

Definition 2.6 (Lyapunov stability: ) Let x∗(t) be a given real or complex solution vector (or
trajectories) of the above n− dimensional system ẋ = f(x). Then

1. x∗(t) is a Lyapunov stable for if only if to each value of ε > 0, however small, there
corresponds a value of δ > 0 (where δ may depend only on ε) such that

||x(t0) − x∗(t0)|| < δ ⇒ ||x(t) − x∗(t)|| < ε , (∀t > t0) (2.4)

where x(t) represents any other neighbouring solution (or trajectories).
2. Otherwise the solution (or trajectories) x∗(t) is unstable in the sense of Lyapunov.

Note. The stable solutions (or trajectories) of an autonomous system are also uniformly stable,
since the system is invariant with respect to time translation.

Definition 2.7 (Quasi-asymptotic stability:) Let x∗ be a solution (or trajectories) for t ≥ t0. If
additionally there exists δ > 0 such that

||x(t0) − x∗(t0)|| < δ ⇒ lim
t→∞
||x(t) − x∗(t)|| = 0 (2.5)

then the solution (or trajectories) is said to be quasi-asymptotic stable.

Definition 2.8 (Asymptotic stability:) Let x∗ be a stable solution (or trajectories) for t ≥ t0. If
additionally there exists δ > 0 such that

||x(t0) − x∗(t0)|| < δ ⇒ lim
t→∞
||x(t) − x∗(t)|| = 0 (2.6)

then the solution (or trajectories) is said to be asymptotic stable.



FUNDAMENTAL CONCEPT OF DIFFERENTIAL EQUATIONS 25

Note. The solution ( trajectories) is asymptotically stable when it is both stable and quasi-
asymptotically stable.

Example 2.3 Show that all solutions of the n-dimensional system ẋ = −x are stable for t ≥ 0
in the Lyapunov sense.

Solution: The general solution is given by

x(t) = x(0)e−t

Consider the stability of x∗(t) for t > 0 where

x∗(t) = x∗(0)e−t

For any x∗(0), we have

||x(t) − x∗(t)|| ≤ ||x(0) − x∗(0)||e−t ≤ ||x(0) − x∗(0)||, t ≥ 0.

Therefore, given any ε > 0, there exist δ > 0 such that

||x(0) − x∗(0)|| < δ⇒ ||x(t) − x∗(t)|| < ε, t > 0.

So the solutions of the system are stable in Lyapunov sence. Here, ε = δ > 0. The solutions are
also uniformly stable.

Example 2.4 Show that all solutions of the n-dimensional system ẋ = −x are asymptotically
stable for t ≥ 0 in the Lyapunov sense.

Solution: The general solution is given by

x(t) = x(0)e−t

Consider the stability of x∗(t) for t > 0 where

x∗(t) = x∗(0)e−t

For any x∗(0), we have

||x(t) − x∗(t)|| ≤ ||x(0) − x∗(0)||e−t ≤ ||x(0) − x∗(0)||, t ≥ 0.

Therefore, given any ε > 0, there exist δ > 0 such that

||x(0) − x∗(0)|| < δ⇒ ||x(t) − x∗(t)|| < ε, t > 0.

Here, ε = δ > 0. Hence, the solutions of the system are stable and

||x(0) − x∗(0)|| < δ⇒ lim
t→∞
||x(t) − x∗(t)|| = 0.

Hence the stable solutions of the system are asymptotically stable.
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2.7 Stability Analysis of Single Variable for Autonomous Sys-
tem

We call a steady state y∗ in the domain asymptotically stable if ∃ r > 0 and B(y∗, r) ⊂ domain
such that if we have as an initial point any y ∈ B(y∗, r), the system will converge to y∗ over time.
We call a system stable if all points in the domain converge to a steady state.

It is easy to tell the stability of a steady state from the phase diagram: If the arrows point
towards the steady state from both sides, it is stable. Else it is unstable. A simple test for
stability is as follows:
Let ẏ = f (y).
If d f (y)

dy |y ∗ < 0 , then the steady state y ∗ is stable.

If d f (y)
dy |y ∗ > 0 , then the steady state y ∗ is unstable.

Example 2.5 Determine the steady state and their stability of the differential equation ẏ =

f (y) = y2 − 5y + 6.

Solution: Let ẏ = 0. Then 0 = y2 − 5y + 6 = (y− 2)(y− 3). Therefore, we have two steady states,
y = 2 and y = 3. Next, take the derivative of ẏ = y2 − 5y + 6 with respect to y to get

d f (y)
dy

= 2y − 5. (2.7)

Evaluated at y ∗ = 2, we have

d f (y)
dy

|y ∗= 2(2) − 5 = −1 < 0. (2.8)

Therefore y ∗ = 2 is a stable steady state. Evaluated at y ∗ = 3, we have

d f (y)
dy

|y ∗= 2(3) − 5 = 1 > 0 (2.9)

and we have that y ∗ = 3 is an unstable steady state.

2.8 Stability Analysis for Autonomous System (General Method)

Equilibria are not always stable. Since stable and unstable equilibria play quite different roles
in the dynamics of a system, it is useful to be able to classify equilibrium points based on their
stability. Suppose that we have a set of autonomous ordinary differential equations, written in
vector form:

ẋ = f(x) (2.10)

Equilibrium point: A point x∗ is called an equilibrium point if dx
dt = 0 at x∗ i.e., if f(x∗) = 0.

Suppose that x∗ is an equilibrium point. By the definition of equilibrium points f(x∗) = 0. Now
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suppose that we take a multivariate Taylor expansion of the right-hand side of our differential
equation:

ẋ = f(x∗) +
∂f
∂x
|x∗ (x − x∗) + · · ·

=
∂f
∂x
|x∗(x − x∗) + · · · (2.11)

The partial derivative in the above equation is to be interpreted as the Jacobian matrix. If the
components of the state vector x are (x1, x2, x3, · · · , xn) and the components of the rate vector f
are ( f1, f2, · · · , fn), then the jacobian matrix is

J =



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn· · ·

· · ·
· · ·
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn



(2.12)

Now we define δx = x − x∗. Taking a derivative of this definition we have δ̇x = ẋ. If δx is small,
then only the first term in equation (2.11) is significant since the higher terms involve powers
of our small displacement from equilibrium. If we want to know how trajectories behave near
the equilibrium point, e.g. whether they move toward or away from the equilibrium point, it
should therefore be good enough to keep just this term. Then we have

δ̇x = J∗δx (2.13)

where J∗ is the Jacobian evaluated at the equilibrium point. The matrix J∗ is a constant, so this
is just a linear differential equation. According to the theory of linear differential equations,
the solution can be written as a superposition of terms of the form eλ jt where λ j is the set of
eigenvalues of the Jacobian.
The eigenvalues of the Jacobian are, in general, complex numbers. Let λ j = µ j + iν j, where µ j

and ν j are respectively, the real and imaginary parts of the eigenvalue. Each of the exponential
terms in the expansion can therefore be written

eλ jt = eµ jteiν jt (2.14)

The complex exponential can be written as

eiν jt = cos(ν jt) + isin(ν jt). (2.15)

Definition 2.9 (Hyperbolic Equilibrium point:) An equilibrium point x∗ is called a hyper-
bolic equilibrium point of (2.10) if none of the eigenvalues of the jacobian matrix J∗ have zero
real part.

Definition 2.10 (Non Hyperbolic Equilibrium point:) An equilibrium point x∗ is called a
non hyperbolic equilibrium point of (2.10) if one of the eigenvalues of the jacobian matrix J∗

have zero real part.
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Definition 2.11 (Node :) An equilibrium point x∗ is called a node when all eigenvalues of the
corresponding jacobian matrix are real and have the same sign. The node is stable (unstable)
when the eigenvalues are negative (positive).

Definition 2.12 (Focus :) An equilibrium point x∗ is called a Focus (sometimes called spiral
point) when eigenvalues of the corresponding jacobian matrix are complex-conjugate; The
focus is stable when the eigenvalues have negative real part and unstable when they have
positive real part.

Definition 2.13 (Sink:) An equilibrium point x∗ of (2.10) is called a sink if all of the eigenvalues
of the matrix J∗ have negative real part.

Definition 2.14 (Source:) An equilibrium point x∗ of (2.10) is called a source if all of the
eigenvalues of the matrix J∗ have positive real part.

Definition 2.15 (Saddle point:) An equilibrium point x∗ of (2.10) is called a saddle if at least
one of the eigenvalues of the matrix J∗ have positive real part and at least one of the eigenvalues
of the eigenvalues of the matrix J∗ have negative real part.

The complex part of the eigenvalue therefore only contributes an oscillatory component to the
solution. So the nature of the solution depends completely on the value of µ j. Depending the
value of µ j there may exist three cases.

Case 1: If µ j < 0 for all j, then all solution of the system (2.10) will tend to the equilibrium point
and the equilibrium point is called stable equilibrium point.

Case 2: If µ j > 0 for any j, eµ jt grows with time, which means that trajectories will tend to move
away from the equilibrium point and the equilibrium point is called unstable equilibrium point.

Definition 2.16 Unstable Equilibrium: An equilibrium point x∗ is called unstable equilib-
rium if it is not a stable equilibrium.

These two cases leads us to a very important theorem which is given below:

Theorem 2.1 An equilibrium point x∗ of the differential equation (2.10) is stable if all the
eigenvalues of J∗, the Jacobian evaluated at x∗, have negative real parts. The equilibrium point
is unstable if at least one of the eigenvalues has a positive real part.

Case 3: If µ j = 0 for some j, then the general theorem is silent on the issue of what happens
if some of the eigenvalues have zero real parts (non hyperbolic equilibrium point) while the
others are all negative.

2.8.1 Stability of Linear Differential Dynamical System with Constant Co-
efficient

To check the stability of a linear dynamical system, we remember the following theorem 2.2.
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Theorem 2.2 (Jordan and Smith (2009)) Let A be a constant matrix in the system ẋ = Ax with
eigenvalues λ1, λ2, · · · , λn.
(i) If the system is stable, then Re(λi) ≤ 0, i = 1, 2, · · · n.
(ii) If either Re(λi) < 0, i = 1, 2, · · · n or if Re(λi) ≤ 0, i = 1, 2, · · · n and there is no zero repeated
eigenvalues, then the system is uniformly stable.
(iii) The system is asymptotically stable if and only if Re(λi) < 0, i = 1, 2, · · · n (and then it is
also uniformly stable by (ii)).
(iv) If Re(λi) > 0 for any i, the solution is unstable.

Note. The uniformly stable is discussed in details in section 2.9.1.

Example 2.6 Discuss about the stability of the following system of differential equations:

ẋ = −x + y, ẏ = 4x − y (2.16)

Solution: For this problem , (0, 0) is an equilibrium point and the above system can be rewritten
as

Ẋ = AX⇒
(
ẋ
ẏ

)
=

(
−1 1
4 −1

) (
x
y

)

The characteristic equation for A is

(1 + λ)2 − 4 = λ2 + 2λ − 3 = (λ + 3)(λ − 1) = 0

and therefore the eigenvalues of the matrix A are λ = (−3, 1). Therefore, we know that the
system is unstable and the equilibrium point (0, 0) is also called saddle point.

Example 2.7 Find the eigenvalues for the system and show that the system is stable

ẏ1 = −y1 − 2y2, ẏ2 = 2y1 − y2VU(CBCS)(2018)
Solution: For this problem , (0, 0) is an equilibrium point and the variational matrix at the
origin is given by

A =

(
−1 −2
2 −1

)

and the eigenvalues are λ1 = −1 + 2i , λ2 = −1− 2i. Both eigenvalues are complex with negative
real part, so the system is stable and the equilibrium point (0, 0) is also called sink.

2.8.2 Stability of Non-linear Differential Dynamical System

To check the stability of a non-linear dynamical system, we have remember the following jaco-
bian.

Let J be the jacobian matrix of the system of differential equations (2.3) which is defined by

J =
d f
dy

=
[ ∂ f
∂y1
· · · ∂ f
∂yn

]
=



∂ f1
∂y1

· · · ∂ f1
∂yn

...
. . .

...
∂ fn
∂y1

· · · ∂ fn
∂yn


.
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Then we can test for stability as follows:
y∗ is stable iff all eigenvalues of J(y∗) are negative or have negative real parts.
y∗ is unstable iff some eigenvalues of J(y∗) is positive or has positive real parts.

If the Jacobian at y∗ has some pure imaginary or zero eigenvalues and no positive eigenvalues,
then we cannot determine the stability of the steady state for looking at Jacobian.

Example 2.8 Examine the stability of the system of differential equations ẋ = ex−1 − 1 and
ẏ = yex.

Solution: We already calculated the steady state of the system will be z = (x, y) = (1, 0). The
Jacobian of the given system is

(
ex−1 0
yex ex

)
(2.17)

When z = (1, 0), then we have the Jacobian
(
1 0
0 e

)

which implies that the eigenvalues of the system are 1 and e. Since both of these are positive, so
the equilibrium point is called source and the system is an unstable at (1, 0).(shown in figure-
2.1)

Example 2.9 Examine the stability of the system of differential equations ẋ = x + 2y and
ẏ = x2 + y.

Solution: We already calculated that the steady states of the system are z = (x, y) = {(0, 0), ( 1
2 ,− 1

4 )}.
The Jacobian of the system is

(
1 2

2x 1

)

When z = (0, 0), then we have the Jacobian
(
1 2
0 1

)

which implies that the repeated eigenvalues is 1. Since both of these are positive, so the
equilibrium point (0, 0) is called a source and the system is an unstable at this point.
When z = ( 1

2 ,− 1
4 ), then we have the Jacobian

(
1 2
1 1

)

and solving for eigenvalues yields λ = 1±
√

2. Since one of them is positive, so the equilibrium
point ( 1

2 ,− 1
4 ) is called a saddle point and the system is an unstable at this point (shown in figure-

2.2).

Example 2.10 Examine the stability of the system of differential equations ẋ = e1−x − 1 and
ẏ = (2 − y)ex.
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Figure 2.1: Unstable steady state Figure 2.2: Unstable steady state

Solution: We already calculated that the steady state of the system will be z = (x, y) = (1, 2).
The Jacobian of the system is

(
−e1−x 0

(2 − y)ex −ex

)
=

(
−1 0
0 −e

)

Which implies that the eigenvalues of the system are−1 and−e. Since both of these are negative,
so the equilibrium point (1, 2) is called a sink and the system is stable at this point (shown in
figure- 2.3).

Figure 2.3: Stable steady state
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Theorem 2.3 (Lyapunov’s Stability) Consider an autonomous system described by the vector
differential equation

ẋ = f(x) (2.18)

where x(t) = (x1(t), x2(t), · · · , xn(t))T and f(x) = ( f1(x), f2(x), · · · , fn(x))T. Suppose the origin of
the state space is an equilibrium point. Consider a Lyapunov function V that is characterized
the following properties:

1. V(0) = 0
2. V(x) > 0 in a neighborhood<n of the origin.
3. V is continuous in<n and possesses continuous first partial derivatives ∂V

∂x1
, ∂V
∂x2
, · · · , ∂V

∂xn
.

The time derivative of V following the trajectories of the vector differential equation is given
by

dV(x)
dt

= V̇(x) =
∂V
∂x1

f1 +
∂V
∂x2

f2 + · · · + ∂V
∂xn

fn (2.19)

V̇(x) =
[∂V(x)
∂x

]T

ẋ (2.20)

where ∂V(x)
∂x is the gradient vector of the Lyapunov function V given by

[∂V(x)
∂x

]T

=
[
∂V
∂x1

,
∂V
∂x2

, · · · , ∂V
∂xn

]
and ẋT = ( f1(x), f2(x), · · · , fn(x))

with a suitable chosen function it may be possible to show that V̇(x) < 0 (V̇ ≤ 0) for x , 0.
Since x = 0 is an equilibrium point i.e., f1(0) = f2(0) = · · · = fn(0) = 0 and so V̇(0) = 0. In
this case the origin is uniformly and asymptotically stable equilibrium point(only uniformly
stable) where x = (x1, x2, · · · , xn) depends on t.

Proof. The elegant proof has been given by Jordan and Smith (2009). The reader may skip the
proof of the above theorem for his first reading.

Example 2.11 Investigate the stability of the zero solution of the system

ẋ = −y − x3, ẏ = x − y3 (2.21)

Solution: Since ẋ = 0 and ẏ = 0 at (0, 0), so origin is an equilibrium point.
Let us consider a family of curves

V(x, y) = x2 + y2 = α, 0 < α < ∞
Then V̇(x, y) =

∂V
∂x

ẋ +
∂V
∂y

ẏ = 2x(−y − x3) + 2y(x − y3) = −2(x4 + y4).

which is negative everywhere except at the origin. Therefore we have found a strong Lyapunov
function for the system. Hence the zero solution is the uniformly and asymptotically stable
in the Lyapunov sense. Also the stream density plot of phase portrait is presented in Fig.-2.4
which also show the stability of the said dynamical system.
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Figure 2.4: The stream density plot of phase portrait of the differential equation (2.21)

Example 2.12 Consider the system

ẋ1 = −2x2 + x2x3 − x3
1, ẋ2 = x1 − x1x3 − x3

2, ẋ3 = x1x2 − x3
3.

Solution: The given problem can be written as

f1(x1, x2, x3) = −2x2 + x2x3 − x3
1

f2(x1, x2, x3) = x1 − x1x3 − x3
2

f3(x1, x2, x3) = x1x2 − x3
3

For this problem , origin (0, 0, 0) is an equilibrium point and the variational matrix at the origin
is given by

J(0) =



∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3


=


0 −2 0
1 0 0
0 0 0

 (2.22)

The eigenvalues of the variational matrix are λ1 = 0, λ2,3 = ±2i i.e., x∗ = (0, 0, 0) is a non-
hyperbolic equilibrium point. So, we use Lyapunov function method and a liapnunov function
is constructed as follows

V(x) = x2
1 + 2x2

2 + x2
3



34 INTRODUCTION TO DIFFERENTIAL EQUATIONS(Dr.K.Maity)

satisfies V(x) > 0 and

V̇(x) =
∂V
∂x1

ẋ1 +
∂V
∂x2

ẋ2 +
∂V
∂x3

ẋ3

= 2x1(−2x2 + x2x3 − x3
1) + 4x2(x1 − x1x3 − x3

2) + 2x3(x1x2 − x3
3)

= −2(x4
1 + 2x4

2 + x4
3) < 0

for x , 0. Therefore according to the theorem 2.3, the system is asymptotically stable at origin.

Theorem 2.4 (Jordan and Smith (2009)) If the n-dimensional system ẋ = Ax + h(x) with A, a
constant n × n matrix and

(i) the zero solution of ẋ = Ax is an asymptotically stable;

(ii) h(0) = 0 and lim
||x||→0

||h(x)||
||x|| = 0 (2.23)

then x(t) = 0, t ≥ t0 for any t0 is an asymptotically stable solution of

ẋ = Ax + h(x) (2.24)

Proof. We have to show there is a neighborhood of the origin where V(x) defined by V(x) = xTKx,

and K =
∞∫
0

eATteAtdt is a strong Lyapunov function for (2.24). The function V given by

V(x) = xTKx,

where K =
∞∫
0

eATteAtdt is positive definite when (i) holds. Also for (2.24),

V(x) = ẋTKx + xTKẋ

= xT(ATK + KA)x + hTKx + xTKh = −xTx + 2hT(x)Kx, (2.25)

by ATK + KA = −I, and the symmetry of K. We have to display a neighbourhood of the origin
in which the first term of (2.25) dominates. From the Cauchy-Schwarz inequality we have

|2hT(x)Kx| ≤ 2||h(x)||||K||||x||. (2.26)

By (ii), given any ε > 0 there exists δ > 0 such that

||x|| < δ ⇒ ||h(x)|| < ε||x||,

so that from (2.26),

|2hT(x)Kx| ≤ 2ε||K||||x||2.. (2.27)

Let ε to be chosen so that
ε <

1
(4||K||) ,

then from (2.27),

||x|| < δ⇒ |2hT(x)Kx| < ||x||
2

=
1
2

(x2
1 + x2

2 + · · · + x2
n)
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Therefore, by (2.25). V̇(x) for (2.24) is negative definition on ||x|| < δ. By Theorem 2.3, the zero
solution is asymptotically stable.

Example 2.13 Prove that the zero solution of the system

ẋ1 = −x1 + x2
2 + x2

3, ẋ2 = x1 − 2x2 + x2
1, ẋ3 = x1 + 2x2 − 3x3 + x2x3

is uniformly and asymptotically stable.

Solution: For this problem , (0, 0, 0) is an equilibrium point and the variational matrix at the
origin is given by

A =


−1 0 0
1 −2 0
1 2 −3

 (2.28)

and h(x) =
[
x2

2 + x2
3, x

2
1, x2x3

]T
.

The eigenvalues of A are−1,−2,−3. Therefore the zero of ẋ = Ax is uniformly and asymptotically

stable. Also ||h(x)|| = x2
2 + x2

3 + x2
1 + |x2x3| and h(0, 0, 0) = 0, lim

||x||→0

||h(x)||
||x|| = lim

||x||→0

x2
2+x2

3+x2
1+|x2x3 |

(|x1 |+|x2 |+|x3 |) = 0.

Then by Theorem-2.4, the zero solution of the given system is uniformly and asymptotically
stable.

Theorem 2.5 If the n-dimensional system ẋ = Ax + h(x) with A is a constant n× n matrix and
1. the eigenvalues of A are distinct, none are zero, and at least one has positive real part

and
2. lim
||x||→0

||h(x)||
||x|| = 0 ,

then the zero solution x(t) = 0, t ≥ t0 of the regular system

ẋ = Ax + h(x). (2.29)

is unstable.

Proof. The elegant proof has been given by Jordan and Smith (2009). The reader may skip the
proof of the above theorem for his first reading.

Example 2.14 Prove that the zero solution of the system

d3x
dt3 − 2

d2x
dt2 −

dx
dt

+ 2x =
d2x
dt2 (x +

dx
dt

)

is unstable.

Solution: Write as the equivalent system

dx
dt

= y,
dy
dt

= z,
dz
dt

= −2x + y + 2z + z(x + y)

Then (0, 0, 0) is the equilibrium point for the above problem and corresponding variational
matrix is given by

A =


0 1 0
0 0 1
−2 1 2

 (2.30)
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and h(x, y, z) = z(x + y).
The eigenvalues of A are −1, 1, 2, two of which are positive. Also ||h(x, y, z)|| = |z(x + y)| and
h(0, 0, 0) = 0, lim

||(x,y,z)||→0

||h(x,y,z)||
||(x,y,z)|| = lim

||(x,y,z)||→0

|z(x+y)|
(|x|+|y|+|z|) = 0. Therefore, by Theorem-2.5, the zero

solution of the given system is unstable.

2.9 Stability Analysis of non-autonomous system

The stability of a non-autonomous dynamical system have been discussed in the following
ways.

2.9.1 Stability Analysis of non-autonomous system for multi variables

Definition 2.17 (Lyapunov stability: ) Let x∗(t) be a given real or complex solution vector (or
trajectories) of the n− dimensional system ẋ = X(x, t). Then

1. x∗(t) is a Lyapunov stable for t ≥ t0 if and only if to each value of ε > 0, however small,
there corresponds a value of δ > 0 (where δ may depend only on ε and t0 ) such that

||x(t0) − x∗(t0)|| < δ ⇒ ||x(t) − x∗(t)|| < ε , (∀t > t0) (2.31)

where x(t) represents any other neighbouring solution (or trajectories).
2. If the given system is autonomous, the reference to t0 in 1 may be disregarded, the

solution (or trajectories) x∗(t) is either Lyapunov stable, or not for all t0.
3. Otherwise the solution (or trajectories) x∗(t) is unstable in the sense of Lyapunov.

Definition 2.18 (Uniform stability:) If a solution (or trajectories) is stable for t ≥ t0 and the
δ of Definition 2.17 is independent of t0, the solution (or trajectories) is uniformly stable on
t ≥ t0.

Note. It is clear that any stable solutions (or trajectories) of an autonomous system are
uniformly stable, since the system is invariant with respect to time translation.

Definition 2.19 (Quasi-asymptotic stability:) Let x∗ be a solution (or trajectories) for t ≥ t0.
If additionally there exists δ(t0) > 0 such that

||x(t0) − x∗(t0)|| < δ ⇒ lim
t→∞
||x(t) − x∗(t)|| = 0 (2.32)

then the solution (or trajectories) is said to be quasi-asymptotic stable.

Definition 2.20 (Asymptotic stability:) Let x∗ be a stable solution (or trajectories) for t ≥ t0.
If additionally there exists δ(t0) > 0 such that

||x(t0) − x∗(t0)|| < δ ⇒ lim
t→∞
||x(t) − x∗(t)|| = 0 (2.33)

then the solution (or trajectories) is said to be asymptotic stable.
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Note. The solution ( trajectories) is asymptotically stable when it is both stable and quasi-
asymptotically stable.

The origin is called stable when for every ε > 0 and δ(ε, t0) > 0 exists so that for all ||x(t0)|| < δ it
follows that ||x(t)|| < ε for all t ≥ t0. If δ is only the function of ε and is independent to t0, then
the origin is uniformly stable.

A system for which the right hand sides of the differential equation system are not explicit
functions of time but functions of x only, i.e.

ẋ = X(x) (2.34)

is ’autonomous’. If an equilibrium point of an autonomous system is stable it is also uniformly
stable.

The origin is quasi-asymptotically stable when a quantity δ(t0) > 0 exists so that ||x(t0)|| < δ implies

lim
t→∞

x(t) = 0 (2.35)

The origin is asymptotically stable when it is both stable and quasi-asymptotically stable.

When every solution (or trajectories) from every point for which solutions (or trajectories) can
be defined tends to the origin, the origin is said to be ’asymptotically stable in the large’. When
this applies for all points in the stable space the origin is said to be ’asymptotically stable in
the whole’. This distinction in Russian literature has been lost in the translation into English of
both these properties as ’global asymptotic stability’.

Example 2.15 Show that all solutions of the n-dimensional system ẋ = −tx are stable for t ≥ t0

in the Lyapunov sense.

Solution: The general solution is given by

x(t) = x(t0)e−( t2
2 −

t20
2 )

Consider the stability of x∗(t) for t > t0 where

x∗(t) = x∗(t0)e−( t2
2 −

t20
2 )

For any x∗(t0), we have

||x(t) − x∗(t)|| ≤ ||x(t0) − x∗(t0)||e−( t2
2 −

t20
2 ) ≤ ||x(t0) − x∗(t0)||, t ≥ t0.

Therefore, given any ε > 0,

||x(t0) − x∗(t0)|| < ε⇒ ||x(t) − x∗(t)|| < η, t > t0.

So the solutions of the system are stable in Lyapunov sense. Here, ε = η > 0. Hence, the solutions
are also uniformly stable.
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Example 2.16 Show that all solutions of the n-dimensional system ẋ = −tx are asymptotically
stable for t ≥ t0 in the Lyapunov sense.

Solution: The general solution is given by

x(t) = x(t0)e−( t2
2 −

t20
2 )

Consider the stability of x∗(t) for t > t0 where

x∗(t) = x∗(t0)e−( t2
2 −

t20
2 )

For any x∗(t0), we have

||x(t) − x∗(t)|| ≤ ||x(t0) − x∗(t0)||e−( t2
2 −

t20
2 ) ≤ ||x(t0) − x∗(t0)||, t ≥ t0.

Therefore, given any ε > 0,

||x(t0) − x∗(t0)|| < ε⇒ ||x(t) − x∗(t)|| < η, t > t0.

Here, ε = η > 0. Hence, the solutions of the system are uniformly stable and

||x(t0) − x∗(t0)|| < ε⇒ lim
t→∞
||x(t) − x∗(t)|| = 0.

Hence the stable solutions of the system are asymptotically stable.

Theorem 2.6 (Jordan and Smith (2009)) If the n-dimensional system ẋ = Ax + h(x, t) with A,
a constant n × n matrix and

1. the zero solution(hence every solution by Theorem-2.7) of ẋ = Ax is an asymptotically
stable;

2. h(0, t) = 0 and lim
||x||→0

||h(x,t)||
||x|| = 0 ,

then x(t) = 0 for t ≥ 0 is an asymptotically stable solution of the regular system ẋ = Ax+h(x, t).

Example 2.17 Prove that when a > 0 and b > 0, all solutions of

ẍ + aẋ + bx + cx2e−t cos t = 0

are asymptotically stable for t ≥ t0, for any t0.

Solution: Let us consider y = ẋ. Then the appropriate equivalent system is
(

ẋ
ẏ

)
=

(
0 1
−b −a

) (
x
y

)
+

(
0

−cx2e−t cos t

)
. (2.36)

Comparting (2.36) with Ẋ = AX + h(X, t), we get

X =

(
x
y

)
, A =

(
0 1
−b −a

)
and h(X, t) =

(
0

−cx2e−t cos t

)
.

The eigenvalues of A are −a±
√

a2−4b
2a . Given that a > 0 and b > 0, so real parts of eigenvalues

are negative. Also (0, 0) is the equilibrium point of (2.36). Therefore, the zero of Ẋ = AX is
uniformly and asymptotically stable. Also ||h(X, t)|| = |cx2e−t cos t| and h(0, t) = 0, lim

||X||→0

||h(X,t)||
||X|| =

lim
(x,y)→(0,0)

|cx2e−t cos t|
(|x|+|y|) = 0. Then by Theorem-2.6, the zero solution of the given non-homogeneous

system is uniformly and asymptotically stable.



FUNDAMENTAL CONCEPT OF DIFFERENTIAL EQUATIONS 39

2.9.2 Stability relation between homogeneous and nonhomogeneous sys-
tems

Consider the n-dimensional nonhomogeneous time-varying linear differential equations:

ẋ = A(t)x + f(t) (2.37)

and the corresponding homogeneous time-varying linear differential equations:

ẋ = A(t)x (2.38)

where x = (x1, x2, · · · , xn)T , A(t) = (ai j(t))n×n ∈ C[I,<n×n], f (t) = ( f1(t), · · · , fn(t))T ∈ C[I,<n].

Definition 2.21 If all solutions of (2.37) have same stability, then systems (2.37) is said to
stable with this class of stability.

Theorem 2.7 (Jordan and Smith (2009)) All solutions of the regular linear system

ẋ(t) = A(t)x(t) + f(t) (2.39)

have the same Lyapunov stability property (unstable, stable, uniformly stable, asymptotically
stable, uniformly and asymptotically stable). This is the same as that of the zero(or any other)
solution of the homogeneous equation ξ̇ = A(t)ξ(t) provided that f is bounded.

Proof. First, we consider to investigate the stability of a solution x∗(t). Let x(t) represent any
other solution, and define ξ(t) by

ξ̇(t) = x(t) − x∗(t). (2.40)

Then ξ(t) tracks the difference between the ’test’ solution and a solution having a different initial
value at time t0. The initial condition for ξ is

ξ̇(t0) = x(t0) − x∗(t0). (2.41)

Also, ξ satisfies the homogeneous equation derived from (2.39):

ξ̇(t) = A(t)ξ. (2.42)

By comparison of 2.40, 2.41 and 2.42 with Definition 2.17, it can be seen that the Lyapunov
stability property of x∗(t) is the same as the stability of the zero solution of 2.42. ξ(t) is called a
perturbation of the solution x∗(t).
Since this new formulation of the problem is independent of the solution of 2.39 initially chosen,
hence the Theorem 2.7.

Note.: The Theorem 2.7 is also true for unbounded function f.

Theorem 2.8 (Jordan and Smith (2009)) For the regular linear system ẋ(t) = A(t)x(t) , the zero
solution (and hence, by Theorem-2.7, all solutions) are Liopunov stable on t ≥ t0, t0 arbitrary,
if and only if every solution is bounded as t → ∞. If A is constant and every solution is
bounded, the solutions are uniformly stable.
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Proof. First, suppose that the zero solution, x∗(t) = 0 is stable. Choose any ε > 0. Then there
exists a corresponding δ for Definition 2.17. Let

Ψ(t) = [ψ1(t), ψ2(t), · · · , ψn(t)]

be the fundamental matrix satisfying the initial condition

Ψ(t0) =
δI
2

where I is the unit matrix. (This is a diagonal matrix with element δ
2 on the principal diagonal.)

By Definition 2.17

Ψi(t0) =
1
2
δ < δ⇒ ||Ψi(t)|| < ε, t ≥ t0.

Therefore every solution (By Theorem 2.7) is bounded since any other solution is a linear
combination of the Ψi(t).
Conversely, suppose that every solution is bounded. Let Φ(t) be any fundamental matrix, then
there exists, by hypothesis, M > 0 such that ||Φ(t) < M, t ≥ t0||. Given any ε > 0 let

δ =
ε

M||Φ−1(t0)|| .

Let x(t) be any solution, we will test the stability of the zero solution. By Theorem ?? in Chapter
??, We have x(t) = Φ(t)Φ−1(t0)x(t0), and if ||x(t)|| < δ, then

||x(t)|| ≤ ||Φ(t)||||Φ−1(t0)||||x(t0)|| < M
δ

Mδ
δ = ε.

Thus Definition 2.17 of stability for the zero solution is satisfied.
When A is a constant matrix, the autonomous nature of the system ensures that stability is
uniform.

Example 2.18 Explain why all solutions are uniformly stable but not asymptotically stable.

ẋ = y, ẏ = −ω2x + cos t.

Solution: The homogeneous system of differential equation is

ξ̇ = η, η̇ = −ω2ξ (2.43)

The corresponding matrix is

A =

(
0 1
−ω2 0

)
(2.44)

and the eigenvalues of A are ± iω. By calculating the corresponding eigenvectors, the general
solution is (

ξ
η

)
= c1

(
1
iω

)
eiωt + c2

(
1
−iω

)
e−iω t (2.45)

Hence the real parts of the eigenvalues of the corresponding homogeneous equations are
zero, therefore the solutions of homogeneous system of equations are uniformly stable but
not asymptotically stable. As cos t is bounded, so by Theorem-2.8, all solutions of given
non-homogeneous equation are also uniformly stable but not asymptotically stable.
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Example 2.19 Explain why all solutions are uniformly and asymptotically stable.

dY1

dt
= −Y1 + 5Y2 + e−t,

dY2

dt
= −4Y1 − 5Y2

Solution: The corresponding homogeneous equation is y′ = Ay with

A =

(
−1 5
−4 −5

)

We can find the eigenvalues, the characteristic equation is
∣∣∣∣∣
−1 − λ 5
−4 −5 − λ

∣∣∣∣∣ = λ2 + 6λ + 25 = 0

so that λ = −3 ± 4i. Next, we need the eigenvector for λ = −3 + 4i:
(

2 − 4i 5
−4 −2 − 4i

) (
v1
v2

)
=

(
(2 − 4i)v1 + 5v2
−4v1 − (2 + 4i)v2

)
=

(
0
0

)

Solving the above equations, we get

v =

(
5
−2

)
+ i

(
0
4

)

Hence, eλtv = e−3t(cos 4t + i sin 4t)
{ (

5
−2

)
+ i

(
0
4

) }
.

Therefore, the complementary solution is

y(t) = A Re(eλtv) + B Im(eλtv)

= Ae−3t
( ( 5
−2

)
cos 4t −

(
0
4

)
sin 4t

)
+ Be−3t

( ( 5
−2

)
sin 4t +

(
0
4

)
cos 4t

)

Therefore,

y1(t) = 5e−3t(A cos 4t + B sin 4t)

y2(t) = 2e−3t
[
(−A + 2B) cos 4t − (2A + B) sin 4t

]

Hence the real parts of the eigenvalues of the corresponding homogeneous system of equations
are negative, so the zero solution corresponding to the equilibrium point ẏ1 = ẏ2 = 0 is uniformly
and asymptotically stable i.e., all solutions of the corresponding homogeneous equations are
bounded and e−t is alway bounded for all t ∈ R, so by Theorem-2.8, all solutions of given
non-homogeneous equations are uniformly and asymptotically stable. Also the stream plot of
phase portrait is presented in Fig.-2.5 which shown the stability of the said dynamical system.

Theorem 2.9 (Jordan and Smith (2009)) Suppose that
(i) A be a constant n × n matrix whose eigenvalues have negative real parts,
(ii) For t0 ≤ t < ∞ , C(t), is continuous and

t∫

t0

||C(t)||dt is bounded. (2.46)

Then all solutions of linear, homogeneous system ẋ(t) = (A + C(t))x(t) are asymptotically
stable.
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Figure 2.5: The stream plot of phase portrait of the differential equation (2.46)

Proof. Write the system in the form

ẋ = Ax + C(t)x (2.47)

If x(t) is a solution, then C(t)x(t) is a function of t which may play the part of f(t) in Theorem ??.
Therefore (2.47) implies

x(t) = Φ(t)Φ−1(t0)x0 +

t∫

t0

Φ(t − s + t0)Φ−1(t0)C(s)x(s)ds,

where Ψ is any fundamental matrix for the system x = Ax and x(t0) = x0. Using the properties
of norms which parallel the properties of vector magnitudes, we obtain

||x(t)|| ≤ ||Φ(t)||||Φ−1(t0)||||x0|| + ||Φ−1(t0)||
t∫

t0

||Φ(t − s + t0)||||C(s)||||x(s)||ds (2.48)

Since A has eigenvalues with negative real parts, Theorem 2.2 shows that for some positive M
and m,

||Φ(t)|| ≤Me−mt, t ≥ t0. (2.49)

Therefore, putting ||Φ−1(t0)|| = β, in equation (2.48) implies, after some regrouping, that for t ≥ t0

||x(t)||emt ≤Mβ||x0|| +
t∫

t0

{||x(s)ems||}{||C(s)||Mβemt0 }ds (2.50)
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Then from (2.50) and Theorem ??,

||x(t)||emt ≤ Mβ||x0|| exp
(
βMe−mt0

t∫

t0

||C(s)||ds
)

or ||x(t)|| ≤ Mβ||x0|| exp
(
βMe−mt0

t∫

t0

||C(s)||ds −mt
)
. (2.51)

Therefore, by (2.46) every solution of (2.47) is bounded for t ≥ t0 and is therefore stable by
Theorem 2.8. Also every solution tends to zero as t→∞ and is therefore asymptotically stable.

Example 2.20 Show that when a > 0 and b > 0 all solutions of

ẍ + aẋ + (b + ce−t cos t)x = 0

are asymptotically stable for t ≥ t0 for any t0.

Solution: The appropriate equivalent system (with ẋ = y) is

(
ẋ
ẏ

)
=

(
0 1
−b −a

) (
x
y

)
+

(
0 0

−ce−t cos t 0

) (
x
y

)
.

In the notation of the above Theorem 2.9,

A =

(
0 1
−b −a

)
, C(t) =

(
0 0

−ce−t cos t 0

)
.

The eigenvalues of A are λ = −a±
√

a2−4b
2 which are negatives if a > 0 and b > 0. Also

∞∫

t0

||C(t)||dt = |c|
∞∫

t0

e−t| cos t|dt < ∞.

The conditions of the Theorem 2.9 are satisfied, so all solutions are asymptotically stable.

Corollary 2.1 (Jordan and Smith (2009)) If C(t) satisfies the conditions of the Theorem 2.9 but
all solutions of ẋ(t) = Ax(t) are merely bounded, then all solutions of ẋ(t) = (A + C(t))x(t) are
bounded and therefore stable.
Proof. This follows from (2.51) by writing m = 0 in (2.50). Note that Re{λi} ≤ 0 for all i is not
in itself sufficient to establish the boundedness of all solutions of ẋ = Ax. 2

Example 2.21 Show that all solution ẍ + {a + c(1 + t2)−1}x = e−t are stable if a > 0.

Solution: The appropriate equivalent system (with ẋ = y) is

(
ẋ
ẏ

)
=

(
0 1
−a 0

) (
x
y

)
+

(
0 0

−c(1 + t2)−1 0

) (
x
y

)
+

(
0

e−t

)
.
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By Theorem 2.7, all solutions of the given system have the same stability property as the zero
solution (or any other) of the corresponding homogeneous system ξ̇ = {A + C(t)}ξ, where

A =

(
0 1
−a 0

)
, C(t) =

(
0 0

−c(1 + t2)−1 0

)
.

The solutions of ξ̇ = Aξ are bounded when a > 0 (the zero solution is a centre on the phase
plane). Also

∞∫

t0

||C(t)||dt = |c|
∞∫

t0

dt
1 + t2 < ∞.

By Corollary 2.1, all solutions of ξ̇ = {A + C(t)}ξ are bounded and are therefore stable.

2.9.3 Lyapunov’s method for determining stability of the zero solution for
Non Autonomous Systems

Consider the continuous time dynamic system

ẋ = f(x, t) (2.52)

with f(0, t) = 0 for all t (which means that the origin is an equilibrium point). Assume that there
exists a scalar function V with continuous partial derivatives in x1, x2, · · · , xn and t and such
that V(0, t) = 0 for all t. Furthermore, the following conditions should be satisfied.

1. V(x, t) should be positive definite. This means that there exists a continuous, non-
decreasing scalar function α(||x||) such that α(0) = 0 for all t and 0 < α(||x||) < V(x, t)
for all x , 0.

2. There exists a continuous non-decreasing function β(||x||) such that β(0) = 0 for all t and
V(x, t) ≤ β(||x||) for all x , 0.

3. There exists a scalar function γ(||x||) such that γ(0) = 0 and γ(||x||) > 0 for x , 0, and along
each trajectory of equation (2.52) the following inequality is satisfied:

dV(x, t)
dt

=
[∂V(x, t)

∂x

]
× f(x, t) +

∂V(x, t)
∂t

< −γ(||x||) < 0 x , 0 (2.53)

4. α(||x||) and β(||x||) tend to infinity as ||x|| → ∞.
If these conditions are fulfilled, then the equilibrium point x = 0 is uniformly asymptotically
stable in the large and V(x, t) is called a Lyapunov function of the system described by
equation (2.52).

Example 2.22 Consider the asymptotic stability of the solution of the system

dx
dt

= − x
t + sin x

in [t0, ∞] (2.54)
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Solution: Choose V(t, x) = (t + sin x)x2, α(||x||) = x2| sin x| and β(||x||) = x2, (t0 ≥ 2). Then
V(t, 0) = 0, α(0) = 0, β(0) = 0, α(||x||) ≤ V(t, x) ≤ β(||x||) and

dv
dt

= 2(t + sin x)x
( −x

t + sin x

)
+ x2

(
1 + cos x × −x

t + sin x

)

= −x2
(
1 +

x cos x
t + sin x

)
< −γ(||x||) < 0, (||x|| << 1)

where γ(||x||) = x2
(
1 + x cos x

t+sin x

)
with γ(||0||) = 0 and since t0 ≥ 2. Also α(||x||) and β(||x||) tend

to infinity as ||x|| → ∞. So the equilibrium point x = 0 is asymptotically stable and V(x, t) =

(t + sin x)x2 is called a Lyapunov function of the system described by equation (2.54).

2.9.4 Stability of Non-autonomous system: Liopunov stability

Consider a regular dynamical system, not necessarily autonomous in n dimensions, written in
vector form as

ẋ(t) = f(x, t) (2.55)

Suppose that x̄(t) and x(t) be two real or complex solution vector of (2.55) with components

x̄(t) =
[
x̄1(t), x̄2(t), · · · , x̄n(t)

]T

x(t) =
[
x1(t), x2(t), · · · , xn(t)

]T
.

(where T stands for transpose: these are column vectors). The separation between them at any
time t will be denoted by the symbol ||x(t) − x̄(t)||, denoted by

||x(t) − x̄(t)|| =
( n∑

i=1

|xi(t) − x̄i(t)|2
) 1

2

, (2.56)

where | · · · | denotes the modulus in the complex number sense, and the ordinary magnitude
when xi and x̄i are real solutions.

2.10 Periodic Solution of a Dynamical System

Periodic Orbit: A periodic orbit corresponds to a special type of solution for a dynamical
system, namely one which repeats itself in time. A dynamical system exhibiting a stable
periodic orbit is often called an oscillator.

Definition 2.22 Limit Cycle: In mathematics, in the study of dynamical systems with two-
dimensional phase space, a limit cycle is a closed trajectory in phase space having the property
that at least one other trajectory spirals into it either as time approaches infinity or as time
approaches negative infinity. Such behavior is exhibited in some nonlinear systems. Limit
cycles have been used to model the behavior of a great many real world oscillatory systems.
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Definition 2.23 Stable Limit Cycle: In the case where all the neighboring trajectories ap-
proach the limit cycle as time approaches infinity, it is called a stable or attractive limit cycle.
Stable limit cycles are examples of attractors. They imply self-sustained oscillations: the
closed trajectory describes perfect periodic behavior of the system, and any small perturba-
tion from this closed trajectory causes the system to return to it, making the system stick to
the limit cycle.

Example 2.23 Consider the system ẋ = y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2).

Solution: Then the above system can be expressed as
(

ẋ
ẏ

)
=

[
1 1
−1 1

] (
x
y

)
+

(
−x(x2 + y2)
−y(x2 + y2)

)

The corresponding linear system
(

ẋ
ẏ

)
=

[
1 1
−1 1

] (
x
y

)

has eigenvalues 1 ± i and has an unstable focus at (0, 0). It is useful in this case to transform to
polar coordinates (r, θ), r2 = x2 + y2 and tanθ =

y
x . Differentiating these two expression with

respect to t and simplifying we have the expression

ṙ = r(1 − r2), θ̇ = −1 (2.57)

From the polar differential equations, ṙ = 0 when r = 0 or r = 1, r = 0 corresponds to the critical
point (0, 0) but r = 1 corresponds to a periodic cycle x2 + y2 = 1, a circle. From the equation of
ṙ, θ̇ we see that ṙ > 0 for 0 < r < 1, ṙ < 0 for r > 1 and θ̇ < 0 for all r, θ. Therefore r is increasing
with t inside the unit circle, and decreasing with t outside.
All trajectories converge to the periodic trajectory r = 1 as t → ∞, r = 1 is an asymptotically
stable limit cycle (Fig. 2.6) of the system.

Figure 2.6: The stable limit cycle. Figure 2.7: Poincare Map.

Definition 2.24 Unstable Limit Cycle: If instead all neighboring trajectories approach it as
time approaches negative infinity, then it is an unstable limit cycle.
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Definition 2.25 Semi stable Limit Cycle: If there is a neighboring trajectory which spirals
into the limit cycle as time approaches infinity, and another one which spirals into it as time
approaches negative infinity, then it is a semi-stable limit cycle.

Definition 2.26 Heteroclinic cycle: In mathematics, a heteroclinic cycle is an invariant set
in the phase space of a dynamical system. It is a topological circle of equilibrium points
and connecting heteroclinic orbits. If a heteroclinic cycle is asymptotically stable, approach-
ing trajectories spend longer and longer periods of time in a neighbourhood of successive
equilibria.

Definition 2.27 Poincar’e Map or orbital Map: Probably the most basic tool for studying the
stability and bifurcations of periodic orbits is the Poincare map which is shown in Fig. 2.7 .

Example 2.24 Consider the system ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2).

Solution: It has a limit cycle Γ represented by γ(t) = (cos t, sin t)T. The poincar’e map can be
found by solving this system written in polar coordinate

ṙ = r(1 − r2), θ̇ = 1

with r(0) = r0 and θ(0) = θ0. Then solving the above two equations, we get

r(t, r0) =

1 + (
1
r2

0

− 1)e−2t


−1/2

,

θ(t, θ0) = t + θ0

If Σ is the ray θ = θ0 through the origin, then Σ is perpendicular to Γ and the trajectory through
the point (ro, θ0) ∈ Σ

⋂
Γ at t = 0 intersects the ray θ = θ0 again at t = 2π. It follows that the

Poincar’e map is given by

P(r0) =

1 + (
1
r2

0

− 1)e−4π


−1/2

clearly P(1) = 1 corresponding to the cycle γ and it is shown in Fig. 2.8. We see that

P′(r0) = e−4πr−3
0

1 + (
1
r2

0

− 1)e−4π


−3/2

and that P′(1) = e−4π < 1.

2.11 Linearization

Linearization is the process of replacing the nonlinear system model by its linear counterpart
in a small region about its equilibrium point. We have well established tools to analyze and
stabilize linear systems.
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Figure 2.8: Poincar’e Map for the above
example.

Figure 2.9: Saddle node bifurcation for the
above example.

2.11.1 Method

Let us write the general form of nonlinear system ẋ = f(x) as:

dx1

dt
= f1(x1, x2, · · · , xn)

dx2

dt
= f2(x1, x2, · · · , xn)

...
...

...
dxn

dt
= fn(x1, x2, · · · , xn) (2.58)

Let ẋ = f(x) has equilibrium state xe = [x1e, x2e, · · · , xne]T such that f(xe) = 0.
We now perturb the equilibrium state by x = xe + ξ where ξ = [ξ1, ξ2, · · · , ξn]T. Taylor’s series
expansion yields

dx
dt

= f(xe + ξ)

= f(xe) +
[
∂f
∂x

]
xe

ξ + O(||ξ||2) (2.59)

where

[
∂f
∂x

]
xe

=



∂ f1
∂x1

· · · ∂ f1
∂xn· · · · · · · · ·

∂ fn
∂x1

· · · ∂ fn
∂xn



∣∣∣∣∣∣∣∣∣
xe

are the Jacobian of f and O(||ξ||2) is an order of ||ξ|| such that lim
||ξ||→0

O(||ξ||2)
||ξ|| = 0. Here,

dx
dt

=
dxe

dt
+

dξ
dt

=
dξ
dt

(2.60)

because xe is constant. Further f(xe) = 0.
Let

A =
[
∂f
∂x

]
xe

.
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Neglecting higher order terms, we arrive at the linear approximation of (2.59) by (2.60)

dξ
dt

= Aξ. (2.61)

Note: All solutions of the nonlinear autonomous system (2.58) have the same Lyapunov stability
property (unstable, stable, uniformly stable, asymptotically stable, uniformly and asymptoti-
cally stable). This is the same as that of the zero(or any other) solution of the homogeneous
equation dξ

dt = Aξ.

Example 2.25 By linearizing around the critical points, draw the phase plane portrait of

y′′ + y − y3 = 0 (2.62)

Solution: First, rewrite in first order form so let y1 = y and define y2 = y′1, now, from the
equation y′′1 = y′2 = y3

1 − y1, putting these together gives:

y′1 = y2, y′2 = y3
1 − y1 (2.63)

The stationary points occur when y′1 = y′2 = 0, hence y2 = 0 and y3
1 − y1 = 0, or, when y1 = −1

or y1 = 0 or y1 = 1. We will look at each of these stationary points in turn. Near y1 = −1 and
y2 = 0 we have y1 = −1 + η where η is small. Hence

y′2 = (−1 + η)3 − (−1 + η) ≈ −1 + 3η + 1 − η = 2η (2.64)

and so, near this stationary point, the system is approximately

η′ = y2

y′2 ≈ 2η (2.65)

or,
(
η′

y′2

)
≈

(
0 1
2 0

) (
η
y2

)
(2.66)

The matrix here has eigenvalues λ1 =
√

2 and λ2 = −
√

2 with eigenvectors

y11 =

(
1√
2

)
(2.67)

and y21 =

(
1
−
√

2

)
(2.68)

Hence, this stationary point is a saddle point and provided η remains small, it is approximated
by (

η
y2

)
≈ C1y11e

√
2t + C2y21e−

√
2t (2.69)

Near y1 = 0 and y2 = 0 we assume both y1 and y2 are small and make the approximation

y′2 = y3
1 − y1 ≈ −y1 (2.70)

and so, near this stationary point, the system is approximately
(

y′1
y′2

)
≈

(
0 1
−1 0

) (
y1
y2

)
(2.71)
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This matrix has eigenvalues ±i and so this is a circle node (Stable node). Near y1 = 1 and y2 = 0
we have y1 = 1 + η where η is small. Hence

y′2 = (1 + η)3 − (1 + η) ≈ 2η (2.72)

and so, near this stationary point, the system is approximately
(
η′

y′2

)
≈

(
0 1
2 0

) (
η
y2

)
(2.73)

and so this point is the same as the y1 = −1, y2 = 0 stationary point. Also the phase diagram is
shown in Fig.-2.10

10.5-0.5-1

1

0.5

-0.5

-1

Figure 2.10: The phase portrait of the given differential equation

Example 2.26 By linearizing around the critical points, draw the phase plane portrait and
check the stability of

y′′ = cos 2y (2.74)

Solution: First order system:

y′1 = y2, y′2 = cos 2y1 (2.75)

now, the critical points are located where y′1 = y′2 = 0. This happens when y2 = 0 and cos 2y1 = 0,
that means 2y1 = (2n + 1)π/2 where n is an odd integer, or y1 = (2n + 1)π/4 where again n is an
odd integer.
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Near y1 = π/4 write y1 = π/4 + η and use cos 2y1 = cos 2(π/4 + η) = − sin 2η and this linearizes
as sin 2η ∼ 2η so the system becomes

η′ = y2, y′2 = −2η.

The corresponding matrix is

A =

(
0 1
−2 0

)
(2.76)

and the eigenvalues of A are ± i
√

2. By calculating the corresponding eigenvectors, the general
solution is (

η
y2

)
= c1

(
1

i
√

2

)
ei
√

2t + c2

(
1
−i
√

2

)
e−i
√

2 t (2.77)

and by beginning at η = r and y2 = 0 we get
(
η
y2

)
= r

(
cos
√

2t
−
√

2 sin
√

2t

)
(2.78)

Then by Theorem-2.8, we have the given system is uniformly stable at the equilibrium point
(π4 , 0) and the said point is also an ellipse with the vertical

√
2 times as long as the horizontal.

Near y1 = 3π/4 write y1 = 3π/4+η and use cos 2y1 = cos 2(3π/4 + η) = sin 2η and this linearizes
as sin 2η ∼ 2η so the system becomes

η′ = y2, y′2 = 2η (2.79)

This is a saddle-point with eigenvalues ±
√

2 and corresponding eigenvectors are
(

1
±
√

2

)
. (2.80)

Then by Theorem-2.8, we have the given system is unstable at the equilibrium point ( 3π
4 , 0).

This pattern repeats by periodicity, the phase portrait is shown in Fig.-2.11

2.12 Bifurcation Theory

Bifurcation theory is the mathematical study of changes in the qualitative or topological struc-
ture of a given family, such as the integral curves of a family of vector fields, and the solutions
of a family of differential equations. Most commonly applied to the mathematical study of
dynamical systems, a bifurcation occurs when a small smooth change made to the parameter
values (the bifurcation parameters) of a system causes a sudden ’qualitative’ or topological
change in its behavior.

Co-dimension of a bifurcation: The co-dimension of a bifurcation is the number of parameters
which must be varied for the bifurcation to occur. This corresponds to the co-dimension of the
parameter set for which the bifurcation occurs within the full space of parameters. Saddle-node
bifurcations and Hopf bifurcations are the only generic local bifurcations which are really co-
dimension-one (the others all having higher codimension). However, transcritical and pitchfork
bifurcations are also often thought of as codimension-one, because the normal forms can be
written with only one parameter.
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Figure 2.11: The phase portrait of the differential equation (2.74)

2.12.1 Classification of Bifurcation

In this section we examine further parametric bifurcations of first-order systems, mainly in
two variables. The approach is through examples, and no attempt is made to cover general
bifurcation theory. However, we can first make some general observations about the first-order
autonomous system in n real variables which contains m real parameters. This can be expressed
in the form

ẋ = X(µ, x), x ∈ <n, µ ∈ <n (2.81)

where µ is an m- dimensional vector of real parameters (the letter< stands for the set of real
numbers). Equilibrium points occur at the solutions for x of the n scalar equations expressed in
vector form by

X(µ, x) = 0 (2.82)

for any given µ.
Suppose that (µ0, x0) is a solution of this equation. Then µ = µ0 is a bifurcation point if the
structure of the phase diagram changes as µ passes through µ0. This rather imprecise definition
covers a number of possibilities including a change in the number of equilibrium points as µ
passes through µ0, or a change in their stability.
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There are different types of bifurcation. It is mainly divided into two types such as
(i) Local bifurcations
(ii) Global bifurcations.

(i) Local Bifurcation:

A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or
fixed point) to change. In continuous systems, this corresponds to the real part of an eigenvalue
of an equilibrium passing through zero. In discrete systems (those described by maps rather
than ODEs), this corresponds to a fixed point having a Floquet multiplier with modulus equal
to one. In both cases, the equilibrium is non-hyperbolic at the bifurcation point. The topological
changes in the phase portrait of the system can be confined to arbitrarily small neighborhoods
of the bifurcating fixed points by moving the bifurcation parameter close to the bifurcation
point (hence ’local’).

Local bifurcation is divided into many parts such as (a) Saddle-node (fold) bifurcation, (b)
Transcritical Bifurcation, (c) Period-doubling (flip) bifurcation, (d)Hopf bifurcation.

(a) Saddle node bifurcation:
In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation
or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical
system collide and annihilate each other. The term ’saddle-node bifurcation’ is most often
used in reference to continuous dynamical systems. In discrete dynamical systems, the same
bifurcation is often instead called a fold bifurcation. Another name is blue skies bifurcation in
reference to the sudden creation of two fixed points.

Example 2.27 Consider the dynamical system defined by

dx
dt

= r + x2, where r, x are reals. (2.83)

Solution: Here f (x) = r + x2, f ′(x) = 2x where x is the state variable and r is the bifurcation
parameter.

(i)If r < 0 there are two equilibrium points, a stable equilibrium point at −√−r and an unstable
one at +

√−r.
(ii) At r = 0 (the bifurcation point) there is exactly one equilibrium point. At this point the fixed
point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed point
(See in Figure 2.12).
(iii) If r > 0 there are no equilibrium points.
In fact, this is a normal form of a saddle-node bifurcation. A scalar differential equation
dx
dt = f (r, x) which has a fixed point at x = 0 for r = 0 with ∂ f

∂x (0, 0) = 0 is locally topological

equivalent to dx
dt = r ± x2, provided it satisfies ∂2 f

∂x2 (0, 0) , 0 and ∂ f
∂r (0, 0) , 0 . The first condition

is the non degeneracy condition and the second condition is the transversality condition.
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Figure 2.12: A normal saddle node bifurcation

Example 2.28 Consider the equations

ẋ = y, ẏ = x2 − y − µ, where µ is real. (2.84)

Solution: Equilibrium points occur where y = 0, x2 − y − µ = 0. Geometrically they lie on the
intersection of the plane y = 0 and the surface y = x2 − µ in (x, y, µ) space. In this case, all
the equilibrium points lie in the plane y = 0, so that we need only show the curve x2 = µ of
equilibrium points in the (x, µ) plane as shown in Fig. 2.13 . There is a bifurcation point at
µ = µ0 = 0 where x = x0 = 0, y = y0 = 0. For µ < 0 there are no equilibrium points whilst for
µ > 0 there are two at x = ±√µ.
For µ > 0, let x = ±√µ + x′ , y = y′ in (2.84). Hence, to the first order

ẋ
′
= y

′
, ẏ

′
= (±√µ + x

′
)2 − y

′ − µ ≈ ±2x
′√
µ − y

′
. (2.85)

The linear approximation is given by

[
ẋ′
ẏ′

]
≈

[
0 1

±2
√
µ −1

] [
x′

y′

]
.

Then eigenvalues of the above matrix are given by λ =
−1±
√

1±8
√
µ

2 .

Hence for x > 0 (i.e., x =
√
µ), the eigenvalues are

−1±
√

1+8
√
µ

2 and so the equilibrium point

(
√
µ, 0) is a saddle; whilst for x < 0 (i.e., x = −√µ), the eigenvalues are

−1±
√

1−8
√
µ

2 and so the
equilibrium point (−√µ, 0) is a stable node, which becomes a stable spiral for

√
µ > 1

8 . however
the immediate bifurcation as µ increases through zero is of saddle-node type. Figure 2.14 shows
the saddle-node bifurcation for µ = 0.01.

(b) Transcritical bifurcation:
In bifurcation theory, a field within mathematics, a transcritical bifurcation is a particular kind of
local bifurcation, meaning that it is characterized by an equilibrium having an eigenvalue whose
real part passes through zero. A transcritical bifurcation is one in which a fixed point exists for
all values of a parameter and is never destroyed. However, such a fixed point interchanges its
stability with another fixed point as the parameter is varied. In other words, both before and
after the bifurcation, there is one unstable and one stable fixed point. However, their stability
is exchanged when they collide. So the unstable fixed point becomes stable and vice versa.
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Figure 2.13: A saddle-node bifurcation Figure 2.14: phase diagram for µ = 0.01

Example 2.29 Consider the dynamical system defined by

dx
dt

= rx − x2, where r, x are reals. (2.86)

Solution: Here f (x) = rx − x2, f ′(x) = r − 2x. This equation is similar to logistic equation but
in this case we allow r and x to be positive or negative (while in the logistic equation x and r
must be non-negative). The two fixed points are at x = 0 and x = r. When the parameter r is
negative, the fixed point at x = 0 is stable and the fixed point x = r is unstable. But for r > 0, the
point at x = 0 is unstable and the point at x = r is stable. So the bifurcation occurs at r = 0 (See
in Figure 2.15).

Figure 2.15: A normal transcritical bifurcation

Example 2.30 Consider the dynamical system defined by

ẋ = y, ẏ = µx − x2 − y, where µ is real. (2.87)

Solution: It has equilibrium points at (0, 0) and (µ, 0). Again all the equilibrium points lie only
in the plane y = 0 in the (x, y, µ) space. The bifurcation curves are given by x(x − µ) = 0, which
are two straight lines intersecting at the origin(see Fig. 2.16).

There is a bifurcation point at µ = µ0 = 0, since the number of equilibrium points changes
from two (µ < 0) to one (µ = 0) and back to two (µ > 0) as µ increases. Near the origin

[
ẋ
ẏ

]
≈

[
0 1
µ −1

] [
x
y

]
.
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Then eigenvalues of the above matrix are given by λ =
−1±
√

1+4µ
2 .

For µ < 0, the origin is stable; a node if − 1
4 < µ < 0, and a spiral if µ < − 1

4 . If µ > 0, then the origin
is unstable.
Near x = µ, with x = µ + x′ and y = y′ ,

[
ẋ′

ẏ′
]
≈

[
0 1
−µ −1

] [
x′

y′
]
.

Then eigenvalues of the above matrix are given by λ =
−1±
√

1−4µ
2 .

For µ < 0, x = µ is a unstable; if µ > 0 then x = µ is a stable node for 0 < µ < 1
4 and a stable spiral

for µ > 1
4 .

This is an example of transcritical bifurcation where, at the intersection of two bifurcation
curves, stable equilibrium switches from one curve to other at the bifurcation point. As µ
increases through zero, the saddle point collides with the node at the origin, and then remains
there whilst the stable node moves away from the origin.

Figure 2.16: A transcritical bifurcation

(c) Period-doubling or pitchfork or flip bifurcation:
In mathematics, a period doubling bifurcation in a discrete dynamical system is a bifurcation
in which a slight change in a parameter value in the system’s equations leads to the system
switching to a new behavior with twice the period of the original system. With the doubled
period, it takes twice as many iterations as before for the numerical values visited by the
system to repeat themselves. A period doubling cascade is a sequence of doubling and further
doublings of the repeating period, as the parameter is adjusted further and further. Period
doubling bifurcations can also occur in continuous dynamical systems, namely when a new
limit cycle emerges from an existing limit cycle, and the period of the new limit cycle is twice
that of the old one.

Formal definition: An ODE

ẋ = f (x, r)

described by a one parameter function f with parameter r ∈ < satisfying:

− f (x, r) = f (−x, r) (f is an odd function)
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∂ f
∂x

(0, ro) = 0, ∂2 f
∂x2 (0, ro) = 0,

∂3 f
∂x3 (0, ro) , 0,

∂ f
∂r

(0, ro) = 0, ∂2 f
∂r∂x (0, ro) , 0.

has a pitchfork bifurcation at (x, r) = (0, ro). The form of the pitchfork is given by the sign of the
third derivative:

∂3 f
∂x3 (0, ro)

{
< 0, supercritical
> 0, subcritical

Figure 2.17: A subcritical case of pitchfork
bifurcation

Figure 2.18: A supercritical case of pitchfork
bifurcation

Example 2.31 The normal form for the supercritical case(See in Figure 2.30) is

dx
dt

= rx − x3, where r is real. (2.88)

Solution: For negative values of r, there is one stable equilibrium at x = 0. For r > 0 there is an
unstable equilibrium at x = 0 and two stable equilibria at x = ±√r.

Example 2.32 The normal form for the subcritical case(See in Figure 2.17) is

dx
dt

= rx + x3. (2.89)

Solution: Here f (x) = rx + x3, f ′(x) = r + 3x3, so for r < 0 the equilibrium at x = 0 is stable, and
there are two unstable equilibria at x = ±√−r. For r > 0 the equilibrium at x = 0 is unstable.

Example 2.33 Consider a dynamical system

ẋ = y, ẏ = µx − x3 − y. (2.90)

Solution: The (x, µ) bifurcation diagram, has a bifurcation point at µ = µ0 = 0. Near the origin
[
ẋ
ẏ

]
≈

[
0 1
µ −1

] [
x
y

]
.

Then eigenvalues of the above matrix are given by λ =
−1±
√

1+4µ
2 .

For µ < 0 the origin is stable; a node if − 1
4 < µ < 0, and a spiral if µ < − 1

4 . If µ > 0 then the origin
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is unstable.
The additional equilibrium points are at x = ±µ for µ > 0. Linearization about these points
shows that x = ±µ are stable nodes for 0 < µ < 1

8 , and stable spirals for µ > 1
8 . As µ increases

through zero the stable node for µ < 0 bifurcates into two stable nodes and a saddle point for
µ > 0. This is an example of pitchfork bifurcation (See in figure 2.19) named after its shape in
the (x, µ) plane.
Pitchfork bifurcations are often associated with symmetry breaking. In the system above, x = 0
is the only (stable) equilibrium point for µ < 0, but as µ increases through zero the system could
be disturbed into either stable mode, thus destroying symmetry.

Figure 2.19: A pitchfork bifurcation

(d) Hopf bifurcation:
In the mathematical theory of bifurcations, a Hopf or PoincarAndronovHopf bifurcation, named
after Henri Poincar, Eberhard Hopf, and Aleksandr Andronov, is a local bifurcation in which a
fixed point of a dynamical system loses stability as a pair of complex conjugate eigenvalues of
the linearization around the fixed point cross the imaginary axis of the complex plane. Under
reasonably generic assumptions about the dynamical system, we can expect to see a small-
amplitude limit cycle branching from the fixed point.

Oscillation: Oscillation is the repetitive variation, typically in time, of some measure about
a central value (often a point of equilibrium) or between two or more different states. The
term ’vibration’ is precisely used to describe mechanical oscillation but used as a synonym
of ’oscillation’ too. Familiar examples include a swinging pendulum and alternating current
power. Oscillations occur not only in mechanical systems but also in dynamic systems in virtu-
ally every area of science: for example the beating human heart, business cycles in economics,
predator-prey population cycles in ecology, geothermal geysers in geology, vibrating strings
in musical instruments, periodic firing of nerve cells in the brain, and the periodic swelling of
Cepheid variable stars in astronomy.

Damped Oscillation: Any oscillation in which the amplitude of the oscillating quantity de-
creases with time. Also known as damped vibration.



FUNDAMENTAL CONCEPT OF DIFFERENTIAL EQUATIONS 59

Some bifurcations generate limit cycles or other periodic solutions. Consider the system

ẋ = µx + y − x(x2 + y2), (2.91)

ẏ = −x + µy − y(x2 + y2) (2.92)

where µ is the bifurcation parameter. The system has a single equilibrium point, at the origin.
In polar co-ordinate the equations become

ṙ = r(µ − r2), θ̇ = −1.

If µ ≤ 0 then the entire diagram consists of a stable spiral. If µ > 0 then there is an unstable spiral
at the origin surrounded by a stable limit cycle which grows out of thew origin- the steps in its
development are shown in Fig. 2.20. This is an example of a Hopf bifurcation which generates
a limit cycle. Typically for such cases the linearization of (2.91) and (2.92) predicts a centre at
the origin, which proves proves to be incorrect: the origin changes from being asymptotically
stable to being unstable without passing through the stage of being a centre.
The following is a simple version, restricted polar type equations, of a more general result.

Figure 2.20: Developement of limit cycle in a Hopf bifurcation

Theorem 2.10 Given the equations ẋ = µx+ y−x f (r), ẏ = −x+µy− y f (r),where r =
√

(x2 + y2),
f (r) and f ′ (r) are continuous for r ≥ 0, f (0) = 0, and f (r) > 0 for r > 0. The origin is the only
equilibrium point. Then
(i) for µ < 0 the origin is a stable spiral covering the whole plane;
(ii) for µ = 0 the origin is a stable spiral;
(iii) for µ > 0 there is a stable limit cycle whose radius increases from zero as µ increases from
zero.

Example 2.34 Show that the equation

ẍ + (x2 + ẋ2 − µ)ẋ + x = 0

exhibits a Hopf bifurcation as µ increases through zero.

We can apply Theorem 2.10 to show that the system has no periodic solution for µ < 0. Write
the equation as

ẋ = X(x, y) = y, ẏ = Y(x, y) = −(x2 + y2 − µ)y − x. (2.93)

Then,
∂X
∂x

+
∂Y
∂y

= −x2 − 3y2 + µ < 0
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for all (x, y) and µ < 0. Hence by Theorem , there can be no closed paths in the phase plane.
For the critical case µ = 0, we can use the Lyapunov function

V(x, y) =
1
2

(x2 + y2)

which results in V̇(x, y) = xẋ + yẏ = xy + y(−(x2 + y2 − µ)y − x) = −(x2 + y2)y2, (∵ µ = 0).

Since V̇(x, y) vanishes along the line y = 0, but is otherwise strictly negative, the origin is an
asymptotically stable equilibrium point. For µ > 0 the system has a stable limit cycle with path
x2 + y2 = µ which evidently emerges from the origin at µ = 0 with a radius which increases
with µ.

Example 2.35 Consider the dynamical system defined by the two equations

dx
dt

= −y + x(a − x2 − y2),
dy
dt

= x + y(a − x2 − y2)

for real x, y, a.

Solution: There is a trivial steady state at x = y = 0. To examine its linear stability, we write
x = 0 + x̃, y = 0 + ỹ. Substituting this into the above defining equations and linearising, we get

dx̃
dt

= −ỹ + ax̃,
dỹ
dt

= x̃ + aỹ

Then the eigenvalue of the above linearized system are λ = a ± i. Now, for a > 0 then Real part
of {λ} > 0 and |x̃|, |ỹ| both tends to infinity as t tends to infinity (linear instability).
Also, for a < 0 then Real part of {λ} < 0 and and |x̃|, |ỹ| both tends to zero as t tends to infinity
(linear stability).
The fact that λ is complex confers a new dynamical feature not encountered in the previous
examples: that of temporal oscillation. For a < 0, for example, the progress of x̃ and ỹ in towards
the origin is via a damped oscillation, as sketched in the left hand plot in Fig. 2.21 , rather than
a straightforward exponential decay. As in the other bifurcation examples, the loss of stability

Figure 2.21: Solution curve for a < 0 and a > 0.

at a = 0 gives rise to a new solution for a > 0. In this case, the new solution is periodic:

x =
√

a cos(t + t0), y =
√

asin(t + t0)
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The system orbits round the limit cycle drawn by the dashed line in the right hand sketch above.
The bifurcation diagram in Fig. 2.22 is then as follows.

Figure 2.22: Hopf-bifurcation.

Figure 2.23: Invariant set.

Invariant Set: We consider autonomous, time-invariant nonlinear system ẋ = f(x) a set C ⊆ <n

is invariant (w.r.t. system, or f) if for every trajectory x,

x(t) ∈ C⇒ x(τ) ∈ C for all τ ≥ t

if trajectory enters C, or starts in C, it stays in C
trajectories can cross into boundary of C, but never out of C. An invariant set have been shown
graphically in Fig. 2.23.

(ii) Global Bifurcation:

Global bifurcations occur when ’larger’ invariant sets, such as periodic orbits, collide with
equilibria. This causes changes in the topology of the trajectories in the phase space which
cannot be confined to a small neighborhood, as is the case with local bifurcations. In fact,
the changes in topology extend out to an arbitrarily large distance (hence ’global’). Global
bifurcations are divided into many parts such as

(a) Homoclinic bifurcation in which a limit cycle collides with a saddle point.
(b) Heteroclinic bifurcation in which a limit cycle collides with two or more saddle points.
(c) Infinite-period bifurcation in which a stable node and saddle point simultaneously occur
on a limit cycle.

(a) Homoclinic bifurcation:
In mathematics, a homoclinic bifurcation is a global bifurcation which often occurs when a
periodic orbit collides with a saddle point. The image below shows a phase portrait before,
at, and after a homoclinic bifurcation in 2 D. The periodic orbit grows until it collides with the
saddle point. At the bifurcation point the period of the periodic orbit has grown to infinity and
it has become a homoclinic orbit. After the bifurcation there is no longer a periodic orbit. A
Homoclinic bifurcation occurs when a periodic orbit collides with a saddle point. In Fig.- 2.24,
Left panel: for small parameter values, there is a saddle point at the origin and a limit cycle in
the first quadrant. Middle panel: as the bifurcation parameter increases, the limit cycle grows
until it exactly intersects the saddle point, yielding an orbit of infinite duration. Right panel:
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Figure 2.24: Homoclinic bifurcation.

when the bifurcation parameter increases further, the limit cycle disappears completely.

(b) Heteroclinic bifurcation
In mathematics, particularly dynamical systems, a heteroclinic bifurcation is a global bifurca-
tion involving a heteroclinic cycle.

(c) Infinite period bifurcation:
In mathematics, an infinite-period bifurcation is a global bifurcation that can occur when two
fixed points emerge on a limit cycle. As the limit of a parameter approaches a certain critical
value, the speed of the oscillation slows down and the period approaches infinity. The infinite-
period bifurcation occurs at this critical value. Beyond the critical value, the two fixed points
emerge continuously from each other on the limit cycle to disrupt the oscillation and form two
saddle points.

2.13 Worked Out Examples

Example 2.36 Find the eigenvalues for the system and show that the system is stable

dy1

dt
= −y1 − 2y2,

dy2

dt
= 2y1 − y2 (2.94)

Sketch the phase diagram.

Solution: Here

A =

(
−1 −2
2 −1

)

and the eigenvalues are λ1 = −1 + 2i , λ2 = −1− 2i. Both eigenvalues are complex with negative
real part, so the system is stable. Also the phase diagram is shown in Fig.-2.25

Example 2.37 Investigate the stability of the zero solution of the system ẋ = −x − 2y2, ẏ =

xy − y3.
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Figure 2.25: The phase portrait of the differential equation(2.94)

Solution: Since ẋ = 0 and ẏ = 0 at (0, 0), so origin is an equilibrium point.
Let us consider a family of curves

V(x, y) = x2 + 2y2 = α, 0 < α < ∞
Then V̇(x, y) =

∂V
∂x

ẋ +
∂V
∂y

ẏ = 2x(−x − 2y2) + 4y(xy − y3)2y = −2(x2 + 2y4)

which is negative everywhere except at the origin. Therefore we have found a strong Lyapunov
function for the system. Hence the zero solution is the uniformly and asymptotically stable in
the Lyapunov sense.

Example 2.38 By linearizing around the critical points, sketch the phase space trajectories
and check the stability of

y′′ = −y′ + y − y2 (2.95)

Solution: Putting y1 = y and y2 = ẏ1 in (2.95), then the said system becomes

y′1 = y2, y′2 = −y2 + y1(1 − y1). (2.96)
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This has two same critical points, one at (y1, y2) = (0, 0) and the second at (y1, y2) = (1, 0).
Near (0, 0) the system linearizes to the system

y′1 = y2, y′2 = y1 − y2. (2.97)

Solving the said system of differential equations, we have two eigenvaluesλ1 = −(1+
√

5)/2, λ2 =

(−1 +
√

5)/2. Here λ2 = (−1 +
√

5)/2 is positive, so the point (0, 0) is saddle point. For
λ1 = −(1 +

√
5)/2, the eigenvector is

y11 =

( −2
1 +
√

5

)
(2.98)

and for λ2 = (−1 +
√

5)/2, the eigenvector is

y21 =

(
2

−1 +
√

5

)
(2.99)

Also, one eigenvalue is positive at (0, 0), so the system is unstable at (0, 0) by Theorem 2.2. Using
section (2.11.1) near (1, 0), we write y1 = 1 + η and get

η′ = y2, y′2 = −y2 + y1 − y2
1 = −y2 + 1 + η − (1 + η)2 ≈ −η − y2 (2.100)

so the eigenvalues are

λ = −1
2
±
√

3
2

i (2.101)

As the real part of all eigenvalues are negative at (1, 0), so the system is stable at (1, 0) by
Theorem 2.2. Also the phase portrait of the given dynamical system is presented in Fig.-2.26
which also show the stability of the said dynamical system.

Example 2.39 Show that the given system of linear homogenous differential equations is
unstable and draw the phase diagram of the differential equations.

dy1

dt
= −3y1 + 2y2,

dy2

dt
= −2y1 + 2y2 (2.102)

Solution: The solution is

y = c1

(
1
2

)
et + c2

(
2
1

)
e−2t (2.103)

Now draw the phase diagram for this solution and name the type of stationary point (saddle
point or outward improper). So, any point that starts on the

(
2
1

)
(2.104)

eigenvector will move inwards, since c1 = 0 and c2e−2t gets small as t increases, anywhere
on the other eigenvectors will move straight outwards. If you aren’t on either eigenvector, the
amount along the negative eigenvalue eigenvector decreases and the amount along the positive
eigenvector eigenvalue increases and so you move outwards getting closer and closer to the
positive eigenvalue line. Here one eigenvalue is positive, so the stationary point is a saddle
point. The phase diagram is shown in Fig.-2.27
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Figure 2.26: The phase portrait of the differential equation(2.95)

Example 2.40 Find the general solutions and the fundamental matric for the system.

dy1

dt
= 2y1 − y2,

dy2

dt
= −4y2 (2.105)

Sketch the phase diagram and and describe the stationary point.

Solution: Here

A =

(
2 −1
0 −4

)

and the spectrum1 is (λ1 = 2, λ2 = −4).
For λ1 = 2, corresponding eigenvector is

y11 =

(
1
0

)

and λ2 = −4, corresponding eigenvector is

y21 =

(
1
6

)
.

So the general solution is

y = c1

(
1
0

)
e2t + c2

(
1
6

)
e−4t.

As λ1 , λ2, so the fundamental matrix is

Φ(t) =

(
e2t e−4t

0 6e−4t

)

1The set of eigenvalues of a matrix is sometimes called its spectrum
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Figure 2.27: The phase portrait of the differential equation(2.102)

. As one eigenvalue is positive, so the system is unstable at the saddle point (0, 0) by Theorem
2.2. Also the phase portrait of the given dynamical system is presented in Fig.-2.28 which also
show the unstable graph of the said dynamical system.

Example 2.41 Show that the given system of linear homogenous differential equations is
unstable and find the fundamental matrix of the system. Draw the phase diagram of the
differential equations.

dy1

dt
= 3y1 + y2,

dy2

dt
= y1 + 3y2 (2.106)

Solution: Here

A =

(
3 1
1 3

)

and the eigenvalues are λ1 = 2 , λ2 = 4. Both eigenvalues are positive, so the system is unstable
by Theorem 2.2.
For λ1 = 2, corresponding eigenvector is

y11 =

(
−1
1

)

and λ2 = 4, corresponding eigenvector is

y21 =

(
1
1

)
.
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Figure 2.28: The phase portrait of the differential equation(2.105)

So the general solution is

y =

(
y1
y2

)
= c1

(
1
1

)
e4t + c2

(
−1
1

)
e2t. (2.107)

As λ1 , λ2, so the fundamental matrix is

Φ(t) =

(
−e2t e4t

e2t e4t

)
.

Also the phase portrait of the given dynamical system in (2.106) is presented in Fig.-2.29 which
also show the unstable graph of the said dynamical system.

Example 2.42 Find the bifurcation points of the system ẋ = −ηx + y, ẏ = −ηx − 3y.

Solution: Let x =

(
x
y

)
, A(η) =

(
−η 1
−η −3

)

so that, in matrix form, the system is equivalent to

ẋ = A(η)x

If η , 0, the system has only one equilibrium point, at the origin; if η = 0, equilibrium occurs at
all points on y = 0. We find the eigenvalues λ of A(η) from

| A(η) − λI |= 0

⇒
∣∣∣∣∣
−η − λ 1
−η −3 − λ

∣∣∣∣∣ = 0

Hence λ satisfies

λ2 + (3 + η)λ + 4η = 0



68 INTRODUCTION TO DIFFERENTIAL EQUATIONS(Dr.K.Maity)

x
21-1-2

y

2

1

-1

-2

Figure 2.29: The phase portrait of the differential equation(2.106)

which has the roots

λ1, λ2 =
1
2

[−η − 3 ±
√

(η − 1)(η − 9)]

we look for bifurcations where the character of the root changes- having regard to whether they
are real or complex, and to the sign when they are real or the sign of the real part when they are
complex.
The classification of the origin is:

η λ1, λ2 Type
η < 0 Real, opposite signs Saddle

0 < η < 1 Real, negative Stable node
1 < η < 9 Complex, negative real part Stable spiral
η > 9 Real negative Stable node

The system has a single bifurcation point η = 0, where there is a change from a stable node to a
saddle.

Example 2.43 Consider the dynamical system defined by

dx
dt

= a − x2, where a is real.

Solution: A steady state solution ( dx
dt = 0) of this system is given by x = x∗ = ±√a. Therefore,

for a < 0 we have no real solution and for a > 0 we have two real solution. We now consider
each of the two solutions for a > 0, and examine their linear stability in the usual way. First, we
add a small perturbation:
x = x∗ + x̃. Substituting this value in the above equation we get

dx̃
dt

= (a − x∗2) − 2x∗x̃ − x̃2
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The value of the bracket in the RHS is zero, from the definition of equilibrium point. At first
order in the perturbation, x̃ we therefore have dx̃

dt = −2x∗x̃ and its solution becomes x̃(t) =

A exp(−2x∗t) = Ae−2x∗t.
Then for x∗ = +

√
a, |x̃(t)| → 0 as t→∞ (linear stability).

Again, for x∗ = −√a, |x̃(t)| → ∞ as t→∞ (linear instability).
As sketched in the bifurcation diagram below in Fig. 2.9, therefore, the saddlenode bifurcation
at a = 0 corresponds to the creation of two new solution branches. One of these is linearly
stable, the other linearly unstable.

Example 2.44 Investigate the bifurcation of the system

ẋ = X(x, y) = 2x(µ − x) − (x + 1)y2, ẏ = Y(x, y) = y(x − 1).

Solution: Equilibrium occurs where

2x(µ − x) − (x + 1)y2 = 0, y(x − 1) = 0,

which can be separate into three curves in (x, y, µ) space:

C1 : x = 0, y = 0; C2 : x = µ, y = 0; C3 : x = 1, y2 = µ − 1(µ ≥ 1).

The equilibrium states are shown in Fig. 2.30. The Jacobian of [X(x, y),Y(x, y)]T is

J(x, y, µ) =


∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

 =

[
2µ − 4x − y2 −2(x + 1)y

y x − 1

]

We need to investigate the eigenvalues of J(x, y, µ) in each equilibrium state since this will
decide the type of each linear approximation.
(a) Equilibrium points on C1. Here

Figure 2.30: Equilibrium curves for ẋ = 2x(µ − x) − (x + 1)y2, ẏ = y(x − 1).

J(0, 0, µ) =

[
2µ 0
0 −1

]

and the eigenvalues of J(0, 0, µ) are given by

det [J(0, 0, µ) −mI2] =

∣∣∣∣∣
2µ −m 0

0 −1 −m

∣∣∣∣∣ = 0
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so that m = −1 or 2µ. Hence for µ < 0, the equilibrium point is a stable node and for µ > 0 a
saddle point.
(b) Equilibrium points on C2. In this case

J(µ, 0, µ) =

[
−2µ 0

0 µ − 1

]
.

The eigenvalues of J(µ, 0, µ) are m = −2µ or µ − 1. Hence for µ < 0 and µ > 1, the eigenvalues
are real and opposite signs, indicating a saddle, whilst for 0 < µ < 1 the eigenvalues are both
real and negative indicating a stable node.

From (a) and (b) it follows that there is a transcritical bifurcation at µ = 0. The situation at
µ = 1 is more complicated since curve C3 intersects C2 there.
(c) Equilibrium points on C3. On this curve

J(1,
√

(µ − 1), µ) =

[
µ − 3 −4

√
(µ − 1)√

(µ − 1) 0

]

Hence the eigenvalues are given by
∣∣∣∣∣
µ − 3 −m −4

√
(µ − 1)√

(µ − 1) −m

∣∣∣∣∣ = 0 or, m2 − (µ − 3)m + 4(µ − 1) = 0.

The eigenvalues can be defined as

m1,m2 =
1
2

[µ − 3 ± √{(µ − 11)2 − 96}]

The eigenvalues for µ > 1 are of the following types
(I) 1 < µ < 11 − 4

√
6(≈ 1.202) : m1,m2 real and negative(stable node);

(II) 11 − 4
√

6 < µ < 3 : m1,m2 complex conjugates with negative real part (stable spiral);
(III)3 < µ < 11 + 4

√
6(≈ 20.798) : m1,m2 complex conjugates with positive real part (unstable

spiral);
(IV)11 + 4

√
6 < µ : m1,m2 both real and positive (unstable node).

Results (b) and (c) (I) above show that a pitchfork bifurcation occurs at the bifurcation point at
µ = 1. As µ increases through µ = 3,the stable spirals at x = 1, y =

√
2 become unstable spirals.

Hence µ = 3 is a bifurcation point indicating a change of stability. A similar bifurcation occurs
at the symmetric point x = 1, y = −√(µ − 1). These are often referred to as Hopf bifurcation: as
we shall see in the next section this stability change of a spiral can generate a limit cycle under
some circumstances, but not in this example.
To summarize, the system has three bifurcation points: a transcritical bifurcation at µ = 0, a
pitchfork bifurcation at µ = 1 and Hopf bifurcation at µ = 3.

2.14 Multiple Choice Questions

1. Consider the system of ODE dY
dx = AY, Y(0) =

(
2
−1

)
where A =

(
1 2
0 −1

)
and Y(x) =

(
y1(x)
y2(x)

)

(a) y1(x)→∞ and y2(x)→ 0 as x→∞ (b) y1(x)→ 0 and y2(x)→ 0 as x→∞
(c) y1(x)→∞ and y2(x)→ −∞ as x→ −∞ (d) y1(x)→∞ and y2(x)→ −∞ as x→ −∞
Ans. (a) and (c). NET(MS): (June)2012
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2. Let Y(x) =

(
y1(x)
y2(x)

)
satisfy dY

dx = AY, t > 0, Y(0) =

(
0
1

)
where A is a 2 × 2 constant matrix

with real entries satisfying trace A = 0 and det A > 0. Then y1(x) and y2(x) both are
(a) monotonically decreasing functions of t. (b) monotonically increasing functions of t.
(c) oscillating functions of t. (d) constant functions of t.
Ans. (c). NET(MS): (Dec.)2012

3. Consider the system of ODE in<2, dY
dt = AY, Y(0) =

[
0
1

]
, t > 0 where A =

[
−1 1
0 −1

]
and

Y(t) =

[
y1(t)
y2(t)

]
. Then NET(MS): (Dec.)2015

(a) y1(t) and y2(t) are monotonically increasing for t > 0.
(b) y1(t) and y2(t) are monotonically increasing for t > 1.
(c) y1(t) and y2(t) are monotonically decreasing for t > 0.
(d) y1(t) and y2(t) are monotonically decreasing for t > 1.
Ans. (d).

4. The critical point of the system dx
dt = −4x − y, dy

dt = x − 2y is an NET(MS): (June)2015
(a) asymptotically stable node (b) unstable node
(c) asymptotically stable spiral (d) unstable spiral.
Ans. (a).
Hint. The eigenvalues are −3, −3. So the eigenvalues are real and negatives. Hence the
critical points of the system is an asymptotically stable node.

5. The critical point (0, 0) of the dynamical system dx
dt = 2x − 7y, dy

dt = 3x − 8y is an
NET(MS): (June)2018
(a) asymptotically stable node (b) unstable node
(c) asymptotically stable spiral (d) unstable spiral.
Ans. (a).
Hint. The eigenvalues are −1, −5. So the eigenvalues are real and negatives. Hence the
critical points of the system is an asymptotically stable node.

6. Let d2 y
dx2 − q(x)y = 0, 0 ≤ x < ∞ with y(0) = y′(0) = 0 , where q(x) is positive monotonically

increasing continuous function. Then, NET(MS): (Dec.)2011
(a) y(x)→∞ as x→∞ (b) y′(x)→∞ as x→∞
(c) y(x) has finitely many zeros in [0, ∞) (d) y(x) has infinitely many zeros in [0, ∞)
Ans. (a) and (b).

7. Let (x(t), y(t)) satisfy the system of ODEs
dx
dt = −x + ty
dy
dt = tx − y
If (x1(t), y1(t)) and (x2(t), y2(t)) are two solutions and Φ(t) = x1(t)y2(t) − x2(t)y1(t)
then dΦ

dt is equal to
1. −2Φ. 2. 2Φ. 3. −Φ. 4. Φ [NET-DEC-2016]
Ans: 1.

8. Test the stability of the system ẋ = y +
xy

1+t2 , ẏ = −x − y +
y2

1+t2

(A) Stable (B) Asymptotically stable (C) Unstable (D) Quasi stable
Ans. (A), (B) and (D)
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2.15 Review Exercises

1. Prove that the linear autonomous plane systems ẋ = ax + by and ẏ = cx + dy is stable if
p2−4q > 0, q > 0, p < 0 and unstable if p2−4q > 0, q > 0, p > 0 where p = a+d, q = ad−bc.

2. For the system ẋ = ax + by and ẏ = cx + dy where ad − bc = 0, show that all points on the
line cx+dy = 0 are equilibrium points. Sketch the phase diagram for the system ẋ = x−2y
and ẏ = 3x − 6y.

3. Find a fundamental matrix for the system

dy1

dt
= y1 + y2,

dy2

dt
= y1 + y3,

dy3

dt
= y3.

Sketch the phase diagram.

Ans. Φ(t) =


et tet t2et

2
0 et tet

0 0 et

 .

4. Find a fundamental matrix for the system

dy1

dt
= y1 + y2,

dy2

dt
= y2,

dy3

dt
= y3.

Sketch the phase diagram.

Ans. Φ(t) =


et 0 tet

0 0 et

0 et 0

 .

5. Find the fundamental matric and the solution x(t) such that x(0) = [3 1]T for the system.

dx1

dt
= x1 − 2e−tx2,

dx2

dt
= et − x2.

Ans. Φ(t) =

(
2 e−t

et 1

)
and x(t) =

(
4 − e−t

2e−t − 1

)

6. Show that the system
ẍ + (2 + 3x2)ẋ + x = 0

is equivalent to the first-order system ẋ = y − x3, ẏ = −x + 2x3 − 2y. Show that the origin
in the (x, y) plane is asymptotically stable.

7. Find the equilibrium points of the nonlinear system

dx1

dt
= x2

1 − x2 + x3,
dx2

dt
= x1 − x2,

dx3

dt
= 2x2

2 + x3 − 2

Ans. (−2,−2,−6) and (1, 1, 0).
8. Show that all solutions of ẍ +

{
a + c(1 + t2)−1

}
x = f (t) are stable if a > 0.

9. Show that all solutions of ẍ + v(x2 − 1)ẋ + x = 0 has an asymptotically stable zero solution
if v < 0.

10. Show that all solutions of ẍ + kẋ + sin x = 0 is an asymptotically stable for k > 0.
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11. Find the linear approximations at the equilibrium points of the nonlinear system

dx1

dt
= x2

1 − x2 + x3,
dx2

dt
= x1 − x2,

dx3

dt
= 2x2

2 + x3 − 2.

Ans. At (1, 1, 0), the linear approximation is ξ̇ =


2 −1 1
1 −1 0
0 4 1

 ξ.

and at (−2,−2,−6), the linear approximation is ξ̇ =


−4 −1 1
1 −1 0
0 −8 1

 ξ.

12. Show that all solutions of


ẋ1
ẋ2
ẋ3

 =


−2 + (1 + t2)−1 0 −1

−1 −1 + (1 + t2)−1 −1
−1 1 −3 + (1 + t2)−1




x1
x2
x3



are asymptotically stable.
Hint. Use the Theorem 2.9.

13. Show that every solution of the system ẋ = −t2x, ẏ = −ty is asymptotically stable.

14. Show that the coefficient matrix of the linearization dx
dt = −2x, dy

dt = −4y of the dynamical
system

dx
dt

= x2 − 2x − xy

dy
dt

= y2 − 4x + xy,

at the point (0, 0) has the negative eigenvalues λ1 = −2, λ2 = −4. Also sow that (0, 0) is a
nodal sink for said dynamical system.

15. Show that all solutions of

dx1

dt
= t−2x1 − 4x2 − 2x3 + t−2

dx2

dt
= −x1 + t−2x2 + x3 + sin t

dx3

dt
= t−2x1 − 9x2 − 4x3 + 1

are asymptotically stable.
Hint. Use the Theorem 2.9.

16. Show that all solutions of

dx1

dt
= 2x1 + e−tx2 − 3x3 + e2

dx2

dt
= −2x1 + e−tx2 + x3 + 1

dx3

dt
= (4 + e−t)x1 − x2 − 4x3 + e−t

are asymptotically stable.
Hint. Use the Theorem 2.9.
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17. The differential equation dx
dt =

x(10−x)
10 − h models a logistic population with harvesting at

rate h. Determine the dependence of number of critical points on the parameter h and
then construct a bifurcation diagram.
Ans. There are two critical points if h < 2.5 and one critical point if h = 2.5 and no critical
point if h > 2.5. The bifurcation diagram is the parabola (c− 5)2 = 25− 10h in the hc−plan.

18. The differential equation dx
dt =

x(x−5)
100 + s models a population with stocking at rate s.

Determine the dependence of number of critical points c on the parameter h and then
construct the corresponding bifurcation diagram on sc-plane.
Ans. There are two critical points if s < 1

16 and one critical point if s = 1
16 and no critical

point if s > 1
16 . The bifurcation diagram is the parabola (2c − 5)2 = 25(1 − 16s) in the

sc−plan.
19. Consider the differential equation dx

dt = kx − x3. (a) If k ≤ 0, show that the only critical
value c = 0 of x is stable. (b) If k > 0, show that the critical point c = 0 is now unstable
but that the critical points c = ±

√
k are stable. Thus the qualitative nature of the solutions

changes at k = 0 as the parameter k increases and so k = 0 is a bifurcation point for the
differential equation with parameter k.

20. Consider the differential equation dx
dt = x + kx3 containing the parameter k. Analyze the

dependence of the number and nature of the critical points on the value of k and construct
the corresponding bifurcation diagram.

21. The predator-prey system

dx
dt

= 5x − x2 − xy,
dy
dt

= −2y + xy

in which the prey population x(t) is logistic but the predator population y(t) would(in
the absence of any prey) decline naturally. Show that the system has three critical points
(0, 0), (5, 0) and (2, 3) with saddle points at the origin and on the positive x−axis, and with
a spiral sink interior to the first quadrant.



Chapter 3

Total (Or Pfaffian) Differential
Equations
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3.1 Introduction

In this chapter, we proposed to discuss differential equations with one independent variable
and more than one dependent variables.

Definition 3.1 (Pfaffian Differential Equation:) Let ui, i = 1, 2, · · · ,n be n functions of some

or all of n independent variables x1, x2, · · · , xn. Then
n∑

i=1
uidxi is called a Pfaffian differential

form in n variables and
n∑

i=1
uidxi = 0 is called a Pfaffian differential equation in n variables

x1, x2, · · · , xn.

Definition 3.2 (Total(Pfaffian)Differential Equation for Three Variables:)

An equation of the form P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0 (3.1)

is called the Pfaffian Differential Equation in three variables x, y, z.

The equation (3.1) can be directly integrated if there exists a function u(x, y, z) whose total
differential du is equal to the left hand number of (3.1). In other cases (3.1) may or may not be
integrable. We now proceed to find the condition which P,Q,R must satisfy, so that (3.1) may be
integrable. This will be called the condition or criteria of integrability of this single differential
equation (3.1).
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3.2 Necessary and sufficient conditions for integrability of to-
tal(or single) differential equation Pdx + Qdy + Rdz = 0.

3.2.1 Necessary condition:

Consider the total (or single) differential equation

Pdx + Qdy + Rdz = 0 where P,Q,R are functions of x, y, z. (3.2)

Let (3.2) have an integral u(x, y, z) = c (3.3)

Then total differential du must be equal to Pdx + Qdy + Rdz, or to it multiplied by a factor. But,
we know that

du = (
∂u
∂x

)dx + (
∂u
∂y

)dy + (
∂u
∂z

)dz. (3.4)

Since (3.3) is an integral of (3.2), P,Q,R must be proportional to ∂u
∂x ,

∂u
∂y ,

∂u
∂z . Therefore,

∂u
∂x
P =

∂u
∂y

Q =
∂u
∂z
R = λ(x, y, z) (say).

λP =
∂u
∂x
, λQ =

∂u
∂y
, and λR =

∂u
∂z

(3.5)

From the first two equations of (3.5), we get

∂
∂y

(λP) =
∂2u
∂y∂x

=
∂
∂x

(∂u
∂y

)
=
∂
∂x

(λQ)

or, λ
∂P
∂y

+ P
∂λ
∂y

= λ
∂Q
∂x

+ Q
∂λ
∂x

or, λ
(∂P
∂y
− ∂Q
∂x

)
= Q

∂λ
∂x
− P

∂λ
∂y

(3.6)

Similarly λ
(∂Q
∂z
− ∂R
∂y

)
= R

∂λ
∂y
−Q

∂λ
∂z

(3.7)

and λ
(∂R
∂x
− ∂P
∂z

)
= P

∂λ
∂z
− R

∂λ
∂x

(3.8)

Multiplying (3.6)-(3.8) by R,P and Q respectively and adding, we get

P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)
= 0. (3.9)

This is therefore, the necessary condition for the integrability of the equation (3.2).

3.2.2 Sufficient condition:

Suppose that the coefficients P,Q,R of (3.2) satisfy the relation (3.9). It will now be proved that
this relation gives the required sufficient condition for the existence of an integral of (3.2). For
this we show that an integral of (3.2) can be found when relation (3.9) holds. We first prove that
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if we take P1 = µP, Q1 = µQ, R1 = µR where µ is any function of x, y and z, the same condition
is satisfied by P1, Q1, R1 as by P, Q, R. We have

∂Q1

∂z
− ∂R1

∂y
= µ

∂Q
∂z

+ Q
∂µ

∂z
−

(
µ
∂R
∂y

+ R
∂µ

∂y

)

or,
∂Q1

∂z
− ∂R1

∂y
= µ

(∂Q
∂z
− ∂R
∂y

)
+ Q

∂µ

∂z
− R

∂µ

∂y
(3.10)

Similarly,
∂R1

∂x
− ∂P1

∂z
= µ

(∂R
∂x
− ∂P
∂z

)
+ R

∂µ

∂x
− P

∂µ

∂z
(3.11)

and
∂P1

∂y
− ∂Q1

∂x
= µ

(∂P
∂y
− ∂Q
∂x

)
+ P

∂µ

∂y
−Q

∂µ

∂x
(3.12)

Multiplying (3.10), (3.11) and (3.12) by P1, Q1, R1 respectively, adding and replacing P1, Q1, R1

by µP, µQ, µR respectively in resulting R.H.S., we obtain

P1

(∂Q1

∂z
− ∂R1

∂y

)
+ Q1

(∂R1

∂x
− ∂P1

∂z

)
+ R1

(∂P1

∂y
− ∂Q1

∂x

)
(3.13)

= µ
{
P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)}
= 0 using (3.9) (3.14)

Now Pdx + Qdy may be regarded as an exact differential. For if it is not so, then multiplying
the equation (3.2) by the integrating factor µ(x, y, z), we can make it so. Thus there is no loss of
generality in regarding Pdx + Qdy as an exact differential. For this the condition is

∂P
∂y

=
∂Q
∂x

(3.15)

Let V =

∫
(Pdx + Qdy) (3.16)

then it follows that P =
∂V
∂x

and Q =
∂V
∂y

(3.17)

From (3.17),
∂P
∂z

=
∂2V
∂z∂x

and
∂Q
∂z

=
∂2V
∂z∂y

. (3.18)

By using the above relation, (3.15), (3.17) and (3.9) gives

∂V
∂x

( ∂2V
∂z∂x

− ∂R
∂y

)
+
∂V
∂y

(∂R
∂x
− ∂2V
∂z∂x

)
= 0 or

∂V
∂x

∂
∂y

(∂V
∂z
− R

)
− ∂V
∂y

∂
∂x

(∂V
∂z
− R

)
= 0

or

∣∣∣∣∣∣∣
∂V
∂x

∂
∂x

(
∂V
∂z − R

)
∂V
∂y

∂
∂y

(
∂V
∂z − R

)
∣∣∣∣∣∣∣ = 0.

This show that a relation independent of x and y exists between V and ( ∂V
∂z ) − R. Consequently

( ∂V
∂z ) − R can be expressed as a function of z and V alone. That is we can take

∂V
∂z
− R = φ(z,V). (3.19)

Now, Pdx + Qdy + Rdz =
∂V
∂x

dx +
∂V
∂y

dy + (
∂V
∂z
− φ)dz, using (3.16) and (3.19)

∂V
∂x

dx +
∂V
∂y

dy +
∂V
∂z

dz − φdz = dV − φdz. (3.20)
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Thus (3.2) may be written as dV − φdz = 0 which is an equation in two variables. Hence its
integration will gives an integral of the form. Hence the condition (3.9) is sufficient. Thus (3.9)
is both the necessary and sufficient condition that (3.2) has an integral.
Theorem 3.1 Prove that the necessary and sufficient condition for integrability of the total
differential equation A.dr = Pdx + Qdy + Rdz = 0 is A.curl A = 0.

Proof. Given A.dr = Pdx + Qdy + Rdz = 0. (3.21)

Let r = xî + y ĵ + zk̂ so that dr = dxî + dy ĵ + dzk̂ (3.22)

and A = Pî + Qĵ + Rk̂ (3.23)

Then we see that (3.21) is satisfied by usual rule of dot product of two vectors A and dr. No
show that the necessary condition for integrability of (3.21) is

P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)
= 0. (3.24)

From vector calculus, we have

Curl A =
(∂Q
∂z
− ∂R
∂y

)
î +

(∂R
∂x
− ∂P
∂z

)
ĵ +

(∂P
∂y
− ∂Q
∂x

)
k̂ (3.25)

Hence, using (3.23) and (3.25) and applying the usual rule of dot product of two vectors, the
necessary condition (3.24) may be rewritten as A.curl A = 0 as desired.

3.3 The conditions for exactness of Pdx + Qdy + Rdz = 0.

The given total differential equation is said to be exact if the following three conditions are
satisfied.

∂P
∂y

=
∂Q
∂x
,
∂Q
∂z

=
∂R
∂y

and
∂R
∂x

=
∂P
∂z
. (3.26)

Note that when condition (3.26) are satisfied, the condition for integrability of Pdx+Qdy+Rdz =

0, namely,

P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)
= 0 (3.27)

is also satisfied for each term of (3.27), vanishes identically.

3.4 Show that the locus of Pdx + Qdy + Rdz = 0 is orthogonal to
the locus of dx

P =
dy
Q = dz

R

The equation Pdx + Qdy + Rdz = 0 (3.28)
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means, geometrically that a straight line whose direction cosines are proportional to dx, dy, dz
is perpendicular to a line whose direction cosines are proportional to P,Q,R. As a consequence
a point which satisfies (3.28) must move in a direction at right angles to a line whose direction
cosines are proportional to P,Q,R. On the other hand, the equations

dx
P

=
dy
Q

=
dz
R

(3.29)

mean geometrically that a straight line whose direction cosines are proportional to dx, dy and
dz. Again from the equation (3.29) (i.e. dx

P =
dy
Q = dz

R ), we see that dx, dy and dz are proportional
to P,Q and R. Thus (P,Q,R) are the corresponding direction rations of the tangents to the curves
at (x, y, z). Thus geometrically the above differential equations represents a system of curves
in space such that the direction cosines of the tangent to these curves at any point (x, y, z) are
proportional to (P,Q,R).
From the above discussion it follows that the curves traced out by the points that are moving
according to the condition (3.28) are orthogonal to the curves traced out by the points that are
moving according to the conditions (3.28). The former curves are any of the curves upon the
surfaces given by (3.28). Thus geometrically, the curves represented by (3.29) are normal to the
surfaces represented by (3.28). In case (3.28) is not integrable, there can not exist a family of
surfaces which is orthogonal to all lines that form the locus of (3.29).

3.5 Geometrical Interpretation of Pdx + Qdy + Rdz = 0

The given differential equation expresses that the tangent to a curve is perpendicular to a certain
line, the direction cosines of this tangent line and another line being proportional to dx, dy, dz
and P,Q,R respectively. Suppose that the equation

Pdx + Qdy + Rdz = 0 (3.30)

satisfies the condition of integrability and that its solution is

F(x, y, z, c) = 0. (3.31)

Since (3.31) has one arbitrary constant, it represents a single infinity of surfaces. Choosing this
constant in an appropriate manner, (3.31) can be made to pass through any given point of space.
If a point is moving upon this surface in any direction, its co-ordinates and direction cosines of
its path at any moment must satisfy (3.30), since (3.31) is the integral of (3.30). Again for each
point (x, y, z) there will be an infinite number of values of dx, dy, dz which will satisfy (3.30).
Thus it follows that a point which is moving in such a manner that its co-ordinates and the
direction cosines of its path always satisfy (3.30) can pass through any point in an infinity of
directions. However, while passing through any point, it must remain on the particular surface
given by (3.31) which passes through the point. Thus, infinite number of such possible curves
which it can describe through that point must lie on the surface.
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3.6 Methods of solution of the Total Differential Equation

In this section, we discuss various type of methods from which a suitable one will be used
to obtain the corresponding integral of the total differential equation. At first the conditions
of integrability as given by (3.9) should be verified first, then the suitable method for the
determination of the corresponding integral as given below will be considered.

3.6.1 Method I(Solution by inspection)

By rearranging the terms of the given equation or by dividing by a suitable functions of x, y, z
to reduce some part of the equation into exact differentials and then integrating, the required
integral is determined.
Example 3.1 Solve (yz + 2x)dx + (zx − 2z)dy + (xy − 2y)dz = 0.

Solution: Comparing the given equation with Pdx + Qdy + Rdz = 0, we get

P = yz + 2x , Q = zx − 2z , R = xy − 2y.

∴ P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)

= (yz + 2x){(x − 2) − (x − 2)} + (zx − 2z)(y − y) + (xy − 2y)(z − z) = 0

Showing that the given total differential equation is integrable. On rearranging, the given
equation can be written as

(yzdx + zxdy + xydz) + 2xdx − 2(zdy + ydz) = 0

⇒ d(xyz) + d(x2) − 2d(yz) = 0

Integrating we get , xyz + x2 − 2yz = c,

which is the required general solution, c being an arbitrary constant.

3.6.2 Method II(Solution of homogeneous equation)

The equation Pdx+Qdy+Rdz = 0 is called a homogeneous equation if P, Q, R are homogeneous
functions of x, y, z of the same degree.
Step I: As usual verify that the given equation is integrable.
Step II: Put x = zu, y = zv so that dx = udz + zdu and dy = zdv + vdz. Substituting these in the
given equation, we solve the equation.
Example 3.2 Solve 2(y + z)dx − (x + z)dy + (2y − x + z)dz = 0

Solution: Comparing the given equation with Pdx + Qdy + Rdz = 0, we get, P = 2y + 2z, Q =

−x − z, R = 2y − x + z and
∑

P( ∂Q
∂z − ∂R

∂y ) = 0. So the condition of integrability is satisfied.
The given equation is homogeneous. Let us consider x = uz, y = vz so as to obtain dx =

udz + zdu, dy = vdz + zdv. Then the given equation becomes

z[2(v + 1)du − (u + 1)dv] + (u + 1)(v + 1)dz = 0

or, 2
du

u + 1
− dv

v + 1
+

dz
z

= 0
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Integrating we get, (u + 1)2z = c(v +1) or (x + z)2 = c(y + z) which is the required general solution
and c being an arbitrary constant.

3.6.3 Method III(Use of auxiliary equation)

Let the total differential equation Pdx + Qdy + Rdz = 0 be integrable. Then it follows that P,Q, R
satisfy

P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)
= 0

Now comparing these two equations we have

dx
∂Q
∂z − ∂R

∂y

=
dy

∂R
∂x − ∂P

∂z

=
dz

∂P
∂y − ∂Q

∂x

(3.32)

known as the auxiliary equations. Then the above auxiliary equations is solved using the
methods (for solving simultaneous equation of type-II) as described in the chapter-??.
Let u = c1, v = c2 (where c1, c2 being arbitrary constants) be the integrals obtained by solving
equation (3.32). Now we find two functions φ and ψ such that the equation may be written by
φdu + ψdv = 0.

In fact as u and v are known, the equation φdu + ψdv = 0 will reduce to an equation of
the form P1dx + Q1dy + R1dz = 0 and comparing this with the original equation the values of
the function φ and ψ are determined and finally with these values of φ and ψ, the equation
φdu + ψdv = 0 can be integrated to obtain the required integral of the given equation.

Example 3.3 Solve xz3dx − zdy + 2ydz = 0.
Solution: Here,

xz3dx − zdy + 2ydz = 0 (3.33)

Comparing (3.33) with Pdx + Qdy + Rdz = 0, here

P = xz3, Q = −z, R = 2y (3.34)

Here P
(
∂Q
∂z − ∂R

∂y

)
+Q

(
∂R
∂x − ∂P

∂z

)
+R

(
∂P
∂y − ∂Q

∂x

)
= xz3 · (−1−2)−z · (0−3xz2)+2y ·0 = −3xz3 +3xz3 = 0.

Thus the condition of integrability is satisfied.
The auxiliary equations of the given equation are

dx
∂Q
∂z − ∂R

∂y

=
dy

∂R
∂x − ∂P

∂z

=
dz

∂P
∂y − ∂Q

∂x

(3.35)

dx
−1 − 2

=
dy

0 − 3xz2 =
dz
0

(3.36)

dx
1

=
dy
xz2 =

dz
0

(3.37)

Taking the third ratio of (3.37), we have

dz = 0 so that z = c1 = u (say) (3.38)

Taking the first and second ratios of (3.37), we have

xz2dx − dy = 0 (3.39)



82 INTRODUCTION TO DIFFERENTIAL EQUATIONS(Dr.K.Maity)

Integrating,
x2u2 − 2y = c2 = v (say) (3.40)

x2z2 − 2y = v using (3.38) (3.41)

Substituting the value of u and v from (3.37) and (3.38) in Adu + Bdv = 0 we get Adz + B(2xz2dx +

2x2zdz − 2dy) = 0
2Bxz2dx − 2Bdy + (A + 2Bx2z)dz = 0 (3.42)

Comparing (3.33) with (3.42), we get xz3 = 2Bxz2, 2y = A + 2Bx2z i.e., B = u
2 , A = −v. Substi-

tuting these values of A and B in Adu + Bdv = 0, we get −vdu + udv
2 = 0⇒ dv

v = 2du
u . Integrating

we get, log v = 2 log u + log c⇒ v = cu2 Using (3.38) and (3.41), we get x2z2 − 2y = cz2 which is
required general solution.

3.6.4 Method IV(General method of solving Pdx + Qdy + Rdz = 0 by taking
one variable as constant)

Step 1. First verify the integrability condition
Step 2. We now treat one of the variables, say z as a constant i.e., dz = 0, then the resulting
equation is reduced to

Pdx + Qdy = 0 using (3.43)

We should select a proper variable to be constant so that the resulting equation in the remaining
variables is easily integrable. Thus this selection will vary from problem to problem. The
present discussion is for the choice z = constant. For other cases the necessary changes have to
be made in the entire procedure.
Step 3. Let the solution of (3.43) by u(x, y, z) = f (z), where f (z) is an arbitrary function of z
(∵ z = constant). Thus the solution of (3.43) is u(x, y) = f (z).
Step 4. We now differentiate u(x, y) = f (z) w.r.t. x, y, z and then compare the result with the
given equation Pdx + Qdy + Rdz = 0. After comparing we shall get an equation in two variables
f and z. If the coefficient of f or z involve functions of x, y, it will always be possible to remove
them with the help of u(x, y) = f (z).
Step 5. Solve the equation got in step 4 and obtain f . Putting this value of f in u(x, y) = f (z),
we shall get the required solution of the required equation.
Example 3.4 Solve 3x2dx + 3y2dy − (x3 + y3 + e2z)dz = 0

Solution: Comparing the given equation with Pdx + Qdy + Rdz = 0, we get

P = 3x2 , Q = 3y2 , R = −(x3 + y3 + e2z).

∴ P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)

= 0

Showing that the condition of integrability is satisfied. Let z be treated as constant, so that
dz = 0. Then the given equation becomes 3x2dx + 3y2dy = 0. Integrating we get

x3 + y3 = f (z) (say) (∵ z is constant) (3.44)

Differentiating (3.44), we get
3x2dx + 3y2dy − f ′(z)dz = 0 (3.45)
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Comparing (3.45) with the given equation 3x2dx + 3y2dy − (x3 + y3 + e2z)dz = 0 we have, f ′(z) =

x3 + y3 + e2z ⇒ f ′(z) = f (z) + e2z. Hence its general solution is f (z) = e2z + cez ⇒ x3 + y3 = e2z + cez,
where c is the required solution.

3.6.5 Method V(Exact and homogeneous of degree n , −1)

Theorem 3.2 If the total differential equation Pdx + Qdy + Rdz = 0 is exact and homogeneous
of degree n , −1, then its general solution is given by Px + Qy + Rz = c where c is an arbitrary
constant.

Solution: The given total differential equation is Pdx + Qdy + Rdz = 0 and so we have

∂P
∂y

=
∂Q
∂x
,
∂Q
∂z

=
∂R
∂y
,
∂R
∂x

=
∂P
∂z
. (3.46)

Also Pdx + Qdy + Rdz = 0 is homogeneous of degree n , −1, so by Euler’s theorem on
homogeneous functions of x, y, z of degree n , −1, we have

x
∂P
∂x

+ y
∂P
∂y

+ z
∂P
∂z

= nP (3.47)

x
∂Q
∂x

+ y
∂Q
∂y

+ z
∂Q
∂z

= nQ (3.48)

x
∂R
∂x

+ y
∂R
∂y

+ z
∂R
∂z

= nR (3.49)

Now adding Pdx + Qdy + Rdz = 0 with the equations (3.47) - (3.49), we get

x
∂P
∂x

+ y
∂P
∂y

+ z
∂P
∂z

+ x
∂Q
∂x

+ y
∂Q
∂y

+ z
∂Q
∂z

+ x
∂R
∂x

+ y
∂R
∂y

+ z
∂R
∂z

+ (Pdx + Qdy + Rdz) = (n + 1)(Pdx + Qdy + Rdz) = 0 (3.50)

Using the equation (3.46), from (3.50) we get
(
P + x

∂P
∂x

+ y
∂P
∂y

+ z
∂P
∂z

)
dx +

(
Q + x

∂Q
∂x

+ y
∂Q
∂y

+ z
∂Q
∂z

)
dy

(
R + x

∂R
∂x

+ y
∂R
∂y

+ z
∂R
∂z

)
dz = 0 (3.51)

d(Px + Qy + Rz) = 0 (3.52)

Integrating we get, Px + Qy + Rz = c is the solution of the total differential equation Pdx + Qdy +

Rdz = 0 which is exact and homogeneous in x, y, z of degree n , −1. Hence the theorem.
Example 3.5 Show that (y + z)dx + (z + x)dy + (x + y)dz = 0 is exact and homogeneous. Hence
solve it.

Solution: Comparing the given total differential equation with Pdx + Qdy + Rdz = 0, we get
P = y + z, Q = z + x, R = x + y. Then

∂P
∂y
− ∂Q
∂x

= 1 − 1 = 0⇒ ∂P
∂y

=
∂Q
∂x

∂Q
∂z
− ∂R
∂y

= 1 − 1 = 0⇒ ∂Q
∂z

=
∂R
∂y

∂R
∂x
− ∂P
∂z

= 1 − 1 = 0⇒ ∂R
∂x

=
∂P
∂z
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Hence the given total differential equation is exact. Also P = y(1+ z
y ), Q = z(1+ x

z ), R = x(1+
y
x ).

So P, Q, R are homogeneous functions of degree 1. Hence the required solution is given by
Px + Qy + Rz = c where c being an arbitrary constant. Hence 2xy + 2yz + 2zx = c is the required
solution.

3.7 Non-integrable Single Differential Equation

Let us consider the single differential equation

Pdx + Qdy + Rdz = 0 (3.53)

where P,Q,R are functions of x, y, z. If the equation (3.53) does not satisfy the condition of
integrability, then there exists no singular relation between x, y, z to satisfy it. However the
equation (3.53) represents a family of curves orthogonal to the family represented by dx

P =
dy
Q =

dz
R . Thus there exists an infinite number of curves that lie on any given surface and satisfy (3.53).
Consequently the method of finding the above mentioned infinite number of curves is equally
applicable to integrable equation (3.53).

Let the curves represented by the solution of the non-integrable equation (3.53) lie on the
surface represented by

u(x, y, z) = c (3.54)

where c being an arbitrary constant. Differentiating (3.54) we have

∂u
∂x

dx +
∂u
∂y

dy +
∂u
∂z

dz = 0 (3.55)

From (3.55) by eliminating the variables z and dz by using (3.53) and (3.54) we get an equation
of the form Mdx + Ndy = 0, where M and N are functions of x, y. Solving this we get relation
between x, y involving an arbitrary constant and this relation with equation (3.55) give the
desire curves i.e., the solution of (3.53).
Example 3.6 Show that there is no single integral of dz = 2ydx + xdy. Prove that the curve of
the equation that lie in the plane z = x + y lie also on surface of the family (x − 1)2(2y − 1) = c.

Solution: Comparing the given equation with Pdx + Qdy + Rdz = 0, we get

P = 2y , Q = x , R = −1.

∴ P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)

= 2y · 0 + x · 0 − 1(2 − 1).

= −1 , 0

Showing that the condition of integrability is not satisfied.
Also from z = x + y, we get, dz = dx + dy. Then using 2ydx + xdy − dz = 0 and dz = dx + dy, we
have,

(2y − 1)dx + (x − 1)dy = 0
2

x − 1
dx +

2
2y − 1

dy = 0

Integrating we get, 2 log(x − 1) + log(2y − 1) = log c i.e., (x − 1)2(2y − 1) = c.



FUNDAMENTAL CONCEPT OF DIFFERENTIAL EQUATIONS 85

3.8 Worked Out Example

Example 3.7 Show that (yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz = 0 is integrable. Hence
solve it.

Solution: Comparing the given equation with Pdx + Qdy + Rdz = 0, we get

P = yz + xyz , Q = zx + xyz , R = xy + xyz.

∴ P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)

= yz(1 + x){(x + xy) − (x + xz)} + zx(1 + y){(y + yz) − (y + xy)} + xy(1 + z){(z + xz) − (z + yz)}
= yz(1 + x)x(y − z) + zx(1 + y)y(z − x) + xy(1 + z)z(x − y)

= xyz{(1 + x)(y − z) + (1 + y)(z − x) + (1 + z)z(x − y)}
= xyz[0 − 0] = 0.

Showing that the condition of integrability is satisfied.
Dividing each term by xyz, the given equation becomes

(
1
x

+ 1)dx + (
1
y

+ 1)dy + (
1
z

+ 1)dz = 0

Integrating, we get, log x + x + log y + y + log z + z = c or log(xyz) + x + y + z = c, which is the
required general solution, where c being an arbitrary constant.
Example 3.8 Show that z(z− y)dx + z(z + x)dy + x(x + y)dz = 0 is an integrable. Hence solve it.

Solution: Comparing the given equation with Pdx + Qdy + Rdz = 0, we get

P = z(z − y) , Q = z(z + x) , R = x(x + y).

∴ P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)

= z(z − y)(2z + x − x) + z(z + x)(2x + y − 2z + y) + x(x + y)(−z − z) = 0,

which show that the condition of integrability is satisfied. So it is an integrable.
The auxiliary equations of the given equation are

dx
∂Q
∂z − ∂R

∂y

=
dy

∂R
∂x − ∂P

∂z

=
dy

∂P
∂y − ∂Q

∂x

(3.56)

⇒ dx
z

=
dy

x + y − z
=

dz
−z
. (3.57)

From first and third ratios, we get dx + dz = 0. Integrating, x + z = c1(constant) or u = c1 where
u = x + z. Again from (3.57), we have dx+dy

x+y = dz
−z . Integrating, log(x + y) + log z = log c2 ⇒

(x + y)z = c2 or v = c2 where v = (x + y)z.
Now we wish to find φ and ψ s.t the given equation is identical with

φdu + ψdv = 0 (3.58)

Then using u = c1, v = c2 we have from (3.58),

φd(x + y) + ψd(xz + yz) = 0

⇒ (φ + zψ)dx + zψdy + (φ + x + y)dz = 0
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Comparing this equation with the given equation, we get φ + zψ = kz(z − y), zψ = kz(z + x)
and φ + x + y = kx(x + y), where k is non zero constant. Now solving the above relations,
we get ψ = k(x + z) = ku and φ = kz(z − y) − zψ = kz(z − y) − kz(z + x) = −ku. Using the
values of φ and ψ in (3.58) becomes −vdu + udv = 0 ⇒ du

u − dv
v = 0. Then integrating we get,

log u − log v = log c⇒ u = cv or x + z = cz(x + y) where c being an arbitrary constant and this is
the required solution of the given equation.
Example 3.9 Find the orthogonal trajectories on the cone x2 + y2 = z2 tan2 α of its intersection
with the family of planes parallel to z = 0.

Solution: Given surface is
f (x, y, z) = x2 + y2 − z2 tan2 α = 0 (3.59)

and the family of planes parallel to z = 0 is

z = k (3.60)

where k is parameter. Then the system of differential equations of the given curves of intersection
of (3.59) and (3.60) is given by

2xdx + 2ydy − 2z tan2 αdz = 0, dz = 0 (3.61)

Solving these equation for dx, dy, dz, we get

dx
y

=
dy
−x

=
dz
0
.

Hence the system of differential equations of the required orthogonal trajectories of the given
curves is

xdx + ydy − z tan2 αdz = 0, ydx − xdy + 0 · dz = 0 (3.62)

Solving these equation for dx, dy, dz, we get

dx
xz tan2 α

=
dy

yz tan2 α
=

dz
x2 + y2 . (3.63)

Taking x, y, 0 as multipliers, each fraction of (3.63) =
xdx+ydy

(x2+y2)z tan2 α
. Combining this fraction with

last fraction in (3.63), we get
xdx + ydy

(x2 + y2)z tan2 α
=

dz
x2 + y2

so that
2xdx + 2ydy − 2z tan2 αdz = 0.

Integrating,
x2 + y2 − z2 tan2 α = k

where k being an arbitrary constant. Choosing k = 0, we obtain the given surface (3.59). Taking
the first and second fractions of (3.62), we get dx

x −
dy
y = 0. Integrating, we get, log x− log y = log c

or x = cy, c being an arbitrary constant.
Hence the required family of the orthogonal trajectories is given by x2 + y2 = z2 tan2 α and
x = cy.
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Example 3.10 Find the orthogonal projection of the curves on the xy−plane which lie on the
paraboloid 3z = x2 + y2 and satisfy the differential equation 2dz = (x + y)dx + ydy.

Solution: Given paraboloid is

f (x, y, z) = x2 + y2 − 3z = 0 (3.64)

The given differential equation is

(x + z)dx + ydy − 2dz = 0 (3.65)

Comparing (3.65) with Pdx + Qdy + Rdz = 0, we have P = x + y, Q = y and R = −2. Now

P
(∂Q
∂z
− ∂R
∂y

)
+ Q

(∂R
∂x
− ∂P
∂z

)
+ R

(∂P
∂y
− ∂Q
∂x

)

= (x + y)(0 − 0) + y(0 − 1) − 2(0 − 0) = −y , 0.

Thus (3.65) does not satisfy the integrability condition. Now differentiability (3.64), we have

2xdx + 2ydy − 3dz = 0 (3.66)

Then from (3.65) and (3.66), we get

3(x + z)dx + 3ydy − 2(2xdx + 2ydy) = 0

⇒ xdx + ydy − 3zdx = 0

⇒ xdx + ydy = (x2 + y2)dx, using (3.64)

⇒ 2xdx + 2ydy
x2 + y2 = 2dx

Integrating we get, log(x2 + y2) = log c + 2x⇒ x2 + y2 = ce2x ⇒ 3z = ce2x (using (3.64)) where c
being an arbitrary constant.

3.9 Review Exercises

1 Show that (2x + y2 + 2xz)dx + 2xydy + x2dz = 0 is integrable.
2 Solve the following equations using Method I

(a) yz log zdx − zx log zdy + xydz = 0, Ans. x log z = cy
(b) (x2z − y3)dx + 3xy2dy + x3dz = 0, Ans. x2z + y3 = cx
(c) y+z−2x

(y−x)(z−x) dx +
z+x−2y

(z−y)(x−y) dy +
x+y−2z

(x−z)(y−z) dz = 0, Ans. (x − y)(y − z)(z − x) = c
(d) (y2 + yz + z2)dx + (z2 + zx + x2)dy + (x2 + xy + y2)dz = 0, Ans. xy + yz + zx = c(x + y + z)
(e) (x2y− y3 − y2z)dx + (xy2 − x2z− x3)dy + (xy2 + x2y)dz = 0, Ans. x2 + y2 + z(x + y) = cxy

3 Solve the following equations using Method II
(a) y(y + z)dx + x(x − z)dy + x(x + y)dz = 0, Ans. x(y + z) = c(x + y)
(b) (x − y)dx − xdy + zdz = 0, Ans. x2 − 2xy + z2 = c
(c) yz2(x2 − yz)dx + x2z(y2 − xz)dy + xy2(z2 − xy)dz = 0, Ans. x2z + y2x + z2y = cxyz
(d) (2z2 − xy + y2)zdx + (2z2 + x2 − xy)zdy − (x + y)(xy + z2)dz = 0, Ans.
(x + y)2z = c(z2 − xy)
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4 Solve the following equations using Method III
(a) xz3dx − zdy + 2ydz = 0, Ans. x2z2 − 2y = cz2

(b) 3x2dx + 3y2dy − (x3 + y3 + e2z)dz = 0, Ans. x3 + y3 = e2z + cez

(c) (y2 + z2 − x2)dx − 2xydy − 2xzdz = 0, Ans. xk = x2 + y2 + z2

(d) (y2 + yz)dx + (xz + z2)dy + (y2 − xy)dz = 0 IAS : 1999, Ans. (x + z)y = k(y + z)
5 Solve the following equations using Method IV

(a) (y2 + z2 + x2)dx − 2xydy − 2xzdz = 0, VU(CBCS):2018 Ans. y2 + z2 = x2 + xk
(b) yz log xdx − zx log zdy + xydz = 0, Ans. x log z = cy
(c) zydx + (x2y − xz)dy + (x2y − xy)dy + (x2z − xy)dz = 0, CU(H):2016 Ans.
x2(y2 + z2 − 2c) = 2xyz
(d) (mz − ny)dx + (nx − lz)dy + (ly −mx)dz = 0, Ans. nx − lz = c(mz − ny)

6 Solve 2xzdx + zdy − dz = 0. Ans. x2 + y − log z = k is the required solution where k is
arbitrary constant.

7 Solve 2xzdx + zdy − dz = 0. Ans. x2 + y − log z = c.
8 Solve (2xz − yz)dx + (2yz − xz)dy − (x2 − xy + y2)dz = 0. Ans. x2 − xy + y2 = cz.
9 Solve (x2 + xy + yz)dx − x(x + z)dy + x2dz = 0. Ans. x + z = ce

y
x .

10 Find f (y) such that the total differential equation (yz+z)
x dx − zdy + f (y)dz = 0 is integrable.

Hence solve it. VU(CBCS): 2018 Ans. f (y) = k(y + 1) and required solution is
xzk = c(y + 1) where k, c are arbitrary constants.

11 Find the general solution of the equation ydx + (z− y)dy + xdz = 0 which is consistent with
the relation 2x − y − z = 1. Ans. x2 + xy − y2 − y = k is the required solution where k is
arbitrary constant.

12 Find the system of curves lying on the system of surfaces xz = c and satisfying the
differential equation yzdx + z2dy + y(z + x)dz = 0. Ans. System of curves are x = c1y and
xz = c2 where c1, c2 are arbitrary constant.

13 Show that the curves satisfying the differential equation xdx + ydy + c
√

1 − x2

a2 − y2

b2 dz = 0

that lie on the ellipsoid x2

a2 +
y2

b2 + z2

c2 = 1 lie also on the family of concentric spheres
x2 + y2 + z2 = a2.

14 Find the orthogonal trajectories on the conicoid (x+ y)z = 1 of the conics in which it which
it is cut by the system of planes x − y + z = k, where k is parameter. Ans. (x + y)z = c and
x + c′ = z − 1

6z3 + 1
2z .

15 Find f (y) if f (y)dx − zxdy − xy log ydz = 0 is integrable. Ans. f (y) = cy
16 Solve: z(z − y)dx + z(z + x)dy + x(x + y)dz = 0, Ans. x + z = cz(x + y) where c is an

arbitrary constant.
17 Solve : 3x2dx + 3y2dy − (x3 + y3 + e2z)dz = 0. Ans. x3 + y3 = e2z + cez where c is an

arbitrary constant.
18 Solve : (cos x + exy)dx + (ex + eyz)dy + eydz = 0. Ans. ycex + zey + sin x = c where c is an

arbitrary constant.
19 Solve : (z + z2) cos xdx− (z + z2)dy + (1− z2)(y− sin x)dz = 0. Ans. y = sin x− cze−z where

c is an arbitrary constant.
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